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Consider the partial differential equation
U= Wy — Wyy — Vpppy + 2000, (1)

Here v = v(t,z) is a function of two variables t and z, a,b,c € R.
This equation is one of simplest versions of the Kuramoto-Syvashinsky

(KS) equation.



The premier versions of the KS equation were proposed
by:

(i) Syvashinsky for the study of the weak turbulence [1]

[1] Syvashinsky G.I. Weak turbulence in periodic flow // Physica
17 D. 1985. P.243-255.

(ii) Kuramoto Y. For the study of the chemical oscillations |2]

[2] Kuramoto Y. Chemical oscillations, waves and turbulence. Berlin:
Springer Verlag.1984. 156 pp.

(iii) Bradley and Harper for study of ripple topography on the surface induced
by ion bombardment |3]

[3] Bradley R.M. and J.M. Harper. Theory of ripple topography
induced by ion bombardment // J.Vac. Sci. Technol. 16. 1988. P.

2390-2395. ;



[n the majority of the papers, KS equation is studied with periodic

boundary condition

otz +1) =v(t,z),l >0,

Without loss generality we can assume that [ = 2. Therefore we can take

periodic houndary conditions in the following form

o(t, 24 2n) = v(t, z). 2)



Always, boundary value problem (1),(2) admits solutions
v(t, ) =

Here,  is any arbitrary real constant.



Sometimes the equilibriums v = const of problem (1),(2) are stable in
the sense of the Lyapunov defenition. Hence the set of these solutions forms
a local attractor. We can show that there exists sufficient condition for the
coefficients of equation (1), when problem (1), (2) has another local attractor.

This attractor is formed by a set of ¢t — periodic solution, i.e.
v(t+T,x) =v(t,z).

But every solution belonging to this attractor is unstable.



Therefore, the problem (1),(2) exhibits
chaos and we can demonstrate this
property by the mathematical method
without numerical calculations



These solutions have the different period T(«) which depend from the

value of the spatial average

1
= — t.x)dr.
Q o v(t,z)dr

-7
Remark: We must notice that the right part of equation (1) has the zero
spacial average.
In the remainder of this communication we wish expose the principal part

of our results and basic part of the applying methods.



Reduction of our nonlinear boundary value
problem

All solutions of problem (1), (2) admit the representation in the form of the

Fourler series

v(t,r) = vo(t) + ult,z)

where
w

1
vo(t) = My(v) = = /?;(t?m)dm

— T

u(t,r) = Z u, (1) exp(inz).

n#0
[t particular we obtain that My(u) = 0.



We can rewrite problem (1), (2) in convenient form. Therefore we obtain

the following problem

’I:’.[]. = () (3)
Up = @y — Dllyy — Upyyy + 2¢(vg + )1y (4)
u(t,z+2m) = u(t,z), My(u) = 0. (5)

It follows from equation (3) that vy(f) = «, where «is any arbitrary real

constant.
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Finally we can rewrite the boundary value problem (4), (5) for the function
u n the closed form

= Au+ ey, (6)
ult,z +21) = ult,x), My(u) = 0. (7)

Here linear operator A = A(a) is defined by the following equality
Au= Ala)u = ale)uy = Dty — gy, ala) = a+ 20

The constant a plays the role of a parameter,
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Let
u(l,z) = f(x) € Hy. (8)

Notice that H = H. is Sobolev space of the 27 periodic functions of & with

square integrable distributional partial derivatives up to the fourth order, i.e.

"

f (f9z))dz < 00,j=10,1,2,3,4

—a

Finally, H; contains the function belonging to H, which have zero average,

1.0,
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According to result of Sobolevsky [4| we can affirm that mix problem
(6).(7).(8) is locally resolvable.
4] P.E. Sobolevsky. On Equations of Parabolic type in Banach
space. Proceeding. Moscow. 1961. Math. Sci. 10. P.297-350.

Recall that boundary value problem (6), (7) has the zero equilibrium

u(t,z) = 0.
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Stability of the trivial equilibrium for the
problem (6),(7)

To study the stability of this solution we consider the following linearized

problem

u = Ala)u, (9)
u(t,z + 27) = u(t,z), My(u) = 0. (10)

Here

Ala)u = —tgyy — by, + ala)u,.
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Let A be an eigenvalue of the linear differential operator A(a). It is defined
on smooth functions satisfying the periodic condition.
The following proposition is valid.

Lemma 1. This operator A(e) has the eigenvalues
A, = —n* +bn* +a(a)in,n # 0
corresponding to the eigenfunctions

en(1) = exp(inz).
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In our case the following propositions are well-known:

(i) if for all n € Z n # 0, ReA, < 0 than the solution u = 0 is

asymptotically stable for problem (9), (10) and for the problem

(6), (7);

(i) if for any n = ny we have Re),, >0 that it is unstable.
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If the following conditions are valid:

1.Rel, <0neZn+#0:

2. for any ny,ny,...,n, we have Re, = 0,7=1,...,p.
Than we have a critical case for the stability of the trivial solution. Here

the critical case 1s realized if b= 1.
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Bifurcation Analysis

To study local bifurcations (i.e. in the neighbourhood of the zero equilibrium).
We put in this section

b=1+ne.

Here ¢ 1s a small positive parameter, v = +1.

It means that the next conditions are valid
b<lify=-lorb>1ify=1.
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We must define the operator A, £) by the equality
Ale, e)w(z) = —w' (z) = (1 + y¢)w"(z) + aw'(z),
w(z+ 2n) = w(x).
This operator has two eigenvalues
A =Tle) £iole)

where

T(e) = ye,0(c) = ala).

Notice that the real part 7(¢) don't depend from « and in particular

(0} = 0.
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The remaining eigenvalues A, (n = £2,£3,...) have the negative real
part
RE)\H i = < 0.

Note than A(a) = A(a, 0). It possesses one pair pure imaginary complex
conjugated eigenvalues.
Hence to study bifurcations in question we must consider already two

parameter — dependent boundary value problem

20



u = Ao, e)u+ 2cuuy,, (11)
u(t,z+2m) = u(t,z), Mo(u) = 0. (12)

According to Hopf-Andronov theorem (see, for example, [4]) for the parabolic
equations the bifurcation problem in question can be reduce to the study any

ordinary differential equation for the complex-value function z = 2(t)
t=el(n +ive)z+ (I + i) 2[2f] + ofe). (13)

To obtain in the terminal conclusion we must calculate the coeflicients of
equation (13). The last equation (namely (13)) is called normal form in the

Poincare-Dulac sense.
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According to the papers |5,6] we can restore the right part of equation (13)
if we apply an algorithm. It is the modified the Krylov-Bogolubov algorithm.

[4] Mariana Haragus, Gerard Iooss. Local bifurcations, center
manifolds and normal forms in infinite-dimenstional dynamical systems.
Springer. 2011.

[5] A. N. Kulikov and D. A. Kulikov Formation of wavy nanostructures
on the surface of flat substrates by ion bombardment // Comput.
Math. Math. Phys. 2012. Vol. 52. No. 5. P. 800-814.

[6] A.N. Kulikov, D.A. Kulikov. Bifurcations in a Boundary-
Value Problem of Nanoelectronics // Journal of mathematical sciences.

2015. Vol. 208. No. 5. P. 211-221.
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Solutions of problem (11), (12) on the center manifold M> are sought in

the form
w(t,r,g) = ?u(t,x, 2, 2) + cua(t,xr, 2, 2)+ (14)
+53f2u3 (t} €Ty 2z, E) + O(E) ?
where z = z(t) are solutions of normal form (13), which described the solution

dynamics on the 2-dimentional invariant manifold M (center manifold).

Here we get in the formula (14) [
uy = zexp(iot + ix) + Zexp(—iot — ix),

the smooth functions wus. u; satisty periodic boundary condition, belongs Hy

for any fixed ¢ and 27 /o periodic in t. At last the functions wus, us satisfy the

following equality

ﬁfﬂ(?ﬁj) — ﬂ'{il(?ﬁ‘j) = []} j = 1}2}

—nwfe m

My (uy) = (1/(27)) [ /’u,j exp(t+iox + ix)drdt.

—mfa
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To determine uy and uz we substitute sum (14) into (11), (12) and equate

the coefficients of = and £%/2.

As a result for us,us we obtain two nongomogeneous boundary value

problem
Uy = A, 0)u + 2uq gy, (15)
Uy (t, T+ 2m) = us(t, ), (16)
Uz = A, 0)u + 2u gy + 2Uglioy + Yy gy — 1)
— (2" exp(iot +1z) + 2 exp(—iot — ix)).
uz(t,z + 2m) = us(t, ). (18)
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Problem (15), (16) has unique suitable solution

Uy = G222 exp(2iot + 2ix) + G, Z° exp(—2iot — 2ix),

c c
G2 — t—, o — —1 .
6 6

Applying the solvability condition to problem (17), (18) gives that

2

M= WEZO:EIZ_JE{U;EE:U-

Remark:(solvability condition in our case)lf we have the problem
u = Ala, O)u + F(t,x),

u(t,r + 27) = u(t,x), My(u) = 0, My (u) = 0.

This problem has the unique solution if My(F) = M, (F) = 0.

Notice that 3 last equalities are solvability condition.
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Return to study normal form (13) which rewrite in truncated form
. ¢,
i=¢lyz - o 2] (13a)

Lemma. Normal form (13) has the set of equilibrium V()
: Y
e=nesplip), g€ R n=\ /-
1

In our case [; < 0. Hence, v > 0(y = 1). These solutions are stable.

if vl = 0.

Hence, we have attractor.,
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Using the results of the articles [5,6] we obtain,
Theorem 1.There exists 5 > 0 such that for all¢ € (0,¢p) and all a problem

(11),(12) has the cycle L given by the asymptotical formula

’H,*(t}m} @}E) = Elﬁn[ﬂxp(iﬁt T 10 T ?E[?O) T {gxp(—i{]"t G ?:('O)H_ (19)

+e1 g exp(2iot + 2z + i) + G, exp(=2iat - Az - 2p)| + of¢),

0 =a0).
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Main theorem. If b = 1+ ~e, value boundary problem (1),(2) has 2-
dimentional invariant manifol (NGRER@Dormed by the 2 parametric set of
periodic funetions

u(t, 2,8, a) = a4 u,(t, 2, 0,) (20)

where the funetion u, was determined by formula (19).

Notice that JBIEIE is cylindrical surface of the 2 dimension.

This manifold is attractor but it can be shown in the standard way that

every solution of the set (20) is unstable.
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Hence, we have any attractor for the solution of problem in question which

Possess two property:

1. All solutions belonging to V5(z,a) (to this manifold) are periodic. In

general, these solutions have different periods.

2. All solutions are unstable.

29



To demonstrate the instability of the solutions belonging to our attractor
it 1s sufficient to prove the following property.

Let vy (t,2,2),v5(t, 2,¢) be two solutions € Vy(a,¢) than we have 2 conditions

max d(t);>o > \/(&1 — )% + denPm, mind(t)50 = |og — o).

Here

d(t) = |vr —valm, o = My(v)),

n is the amplitude of the periodic solution of normal form (13a).
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The obtained results may be used for explanation of weak turbulence as
the attractor in question is formed by the unstable periodic solutions.

We verified 2 properties from the Devaney definition [6] containing 3
properties.

Third property is transitivity. It is desirable that 3 properties be valid. In
this case we shall get the chaotic dvnamic in the sense of Devaney definition.
But now we have the attractor which is quasichaotic.

We can say that the solutions of problem (1), (2) demonstrate the weak
turbulence [1].

The part of these results was published in the papers [4,5] (also see the
references in these articles).

A£6] Devaney R.L. An Introduction to chaotic Dynamical Systems.
A -W.P.C. 1989. 333 p.
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To describe the formation of nongomogeneous relief under ion bombardment
we considered the generalized KS equation in which the function depends
from 3 variables ¢, z,y [5]. In this case we studied the similar problem and
obtained the nongomogeneous relief in similar form (see, [19] and (20)). You
can see on the poster the picture of that relief

U

Y

Here t is fixed. The similar relief was obtained in the experiences.
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Any other works about this investigation:

(7] Kulikov A.N., Kulikov D.A. Bifurcations of Spatially Inhomogeneous
Solutions in Two boundary value Problems for the Generalized
Kuramoto-Syvashinsky Equation // Vestnik Mephi(Bectank Ha-
IHOHAJILHONO HMCCJIeI0BaTe/IbcKoro daaepuoro yuusepcurera "MH-
OI1"). 2014. Vol. 3. No 4. P. 408-415(in Russian).

8] Kulikov A.N., Metlitskaya A.V., Rudyi A.S. Formation of
the Nanorelief at a Surface Erosion by Ion Bombardment within

the Bradley-Harper Model // Russian Microelectronics. 2013. Vol.
42. No 4. P. 238-245.
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Thank you for attention



