Torsional instability in suspension bridges:
the Tacoma Narrows Bridge case

Filippo Gazzola
Dipartimento di Matematica - Politecnico di Milano
Joint work with G. Arioli (PoliMi)

Workshop in Nonlinear PDEs
Bruxelles, September 7–11, 2015
The first suspension bridges were erected 200 years ago. Many bridges had serious problems under the action of the wind or of traffic loads.
The **first suspension bridges** were erected 200 years ago. Many bridges had serious problems under the action of the wind or of traffic loads.

The most impressive failure of history is certainly the **Tacoma Narrows Bridge** collapse in November 1940.
The TNB collapse is not an isolated event; other bridges collapsed in a similar way due to hurricanes:

the **Brighton Chain Pier** (UK) collapsed in 1836;
the **Menai Straits Bridge** (UK) collapsed in 1839;
the **Wheeling Suspension Bridge** (US) collapsed in 1854;
the **Matukituki Suspension Footbridge** (NZ) collapsed in 1977.

By "similar way" we mean that unexpected and destructive torsional oscillations suddenly appeared.
The TNB collapse is not an isolated event; other bridges collapsed in a similar way due to hurricanes:

the **Brighton Chain Pier** (UK) collapsed in 1836;
the **Menai Straits Bridge** (UK) collapsed in 1839;
the **Wheeling Suspension Bridge** (US) collapsed in 1854;
the **Matukituki Suspension Footbridge** (NZ) collapsed in 1977.

By “**similar way**” we mean that

unexpected and destructive torsional oscillations suddenly appeared.
The Official Report

- O.H. Ammann, T. von Kármán, G.B. Woodruff, *The failure of the Tacoma Narrows Bridge*, Federal Works Agency (1941) considers ...the crucial event in the collapse to be the sudden change from a vertical to a torsional mode of oscillation.
The Official Report

considers ...the crucial event in the collapse to be the sudden change from a vertical to a torsional mode of oscillation.

There have been many attempts to answer to the following fundamental question:

why do torsional oscillations appear suddenly?

- mistake in the project, structural failure
- resonance due to the frequency of the wind
- flutter theory
- vortex shedding, von Kármán vortices
- angle of attack of the wind
- parametric resonance.
The civil and aeronautical engineer Robert Scanlan writes that …the original Tacoma Narrows Bridge withstood random buffeting for some hours with relatively little harm until some **fortuitous condition** “broke” the bridge action over into its low antisymmetrical torsion flutter mode.

Joe McKenna writes that there is no consensus on what caused the sudden change to torsional motion.

The civil engineer Richard Scott writes that opinion on the exact cause of the Tacoma Narrows Bridge collapse is even today not unanimously shared.

The civil and aeronautical engineer Robert Scanlan writes that...

...the original Tacoma Narrows Bridge withstood random buffeting for some hours with relatively little harm until some fortuitous condition “broke” the bridge action over into its low antisymmetrical torsion flutter mode.

Joe McKenna writes that

there is no consensus on what caused the sudden change to torsional motion.

The civil and aeronautical engineer Robert Scanlan writes that
...the original Tacoma Narrows Bridge withstood random buffeting
for some hours with relatively little harm until some fortuitous
condition “broke” the bridge action over into its low
antisymmetrical torsion flutter mode.
• R.H. Scanlan, *The action of flexible bridges under wind*, J.
Sound & Vibration (1978)

Joe McKenna writes that
there is no consensus on what caused the sudden change to
torsional motion.
• P.J. McKenna, *Torsional oscillations in suspension bridges
revisited: fixing an old approximation*, Amer. Math. Monthly
(1999)

The civil engineer Richard Scott writes that
opinion on the exact cause of the Tacoma Narrows Bridge collapse
is even today not unanimously shared.
• R. Scott, *In the wake of Tacoma. Suspension bridges and the
All the suggested explanations are of \textit{aerodynamic type} but none of them gives a satisfactory answer to the question either because the quantitative parameters do not fit the theoretical explanations or because the experiments in wind tunnels do not confirm the underlying theory.
All the suggested explanations are of *aerodynamic type* but none of them gives a satisfactory answer to the question either because the quantitative parameters do not fit the theoretical explanations or because the experiments in wind tunnels do not confirm the underlying theory.

We believe that the correct explanation has to be sought in the *nonlinear behavior of structures*.
All the suggested explanations are of **aerodynamic type** but none of them gives a satisfactory answer to the question either because the quantitative parameters do not fit the theoretical explanations or because the experiments in wind tunnels do not confirm the underlying theory.

We believe that the correct explanation has to be sought in the **nonlinear behavior of structures**.

To this end, we **isolate the bridge from forcing and damping**.

All the suggested explanations are of aerodynamic type but none of them gives a satisfactory answer to the question either because the quantitative parameters do not fit the theoretical explanations or because the experiments in wind tunnels do not confirm the underlying theory.

We believe that the correct explanation has to be sought in the nonlinear behavior of structures.

To this end, we isolate the bridge from forcing and damping.

The results should not depend on the particular model considered nor on the tools used to analyze it:

qualitative & quantitative – approximations & simplifications.
For a survey of the historical events and previous models:

Mathematical Models for Suspension Bridges
Nonlinear Structural Instability

This work provides a detailed and up-to-the-minute survey of the various stability problems that can affect suspension bridges. In order to deduce some experimental data and rules on the behavior of suspension bridges, a number of historical events are first described, in the course of which several questions concerning their stability naturally arise. The book then surveys conventional mathematical models for suspension bridges and suggests new nonlinear alternatives, which can potentially supply answers to some stability questions. New explanations are also provided, based on the nonlinear structural behavior of bridges. All the models and responses presented in the book employ the theory of differential equations and dynamical systems in the broader sense, demonstrating that methods from nonlinear analysis can allow us to determine the thresholds of instability.
A NEW MATHEMATICAL MODEL

The PDE's are obtained by variational methods, that is, by minimizing the energies involved.
A NEW MATHEMATICAL MODEL

NOTATIONS

\[w' = \frac{dw}{dx}, \quad \dot{w} = \frac{dw}{dt}, \quad w_x = \frac{\partial w}{\partial x}, \quad w_t = \frac{\partial w}{\partial t}. \]
A NEW MATHEMATICAL MODEL

NOTATIONS

\[w' = \frac{dw}{dx}, \quad \dot{w} = \frac{dw}{dt}, \quad w_x = \frac{\partial w}{\partial x}, \quad w_t = \frac{\partial w}{\partial t}. \]

The PDE’s are obtained by variational methods, that is, by minimizing the energies involved.
\[L = \text{deck length} \quad 2\ell = \text{deck width} \quad (2\ell \ll L). \]

We model the deck as a degenerate plate = a beam representing the midline of the deck with cross sections which can rotate around the beam:

\[y = \text{position of the beam}, \quad \theta = \text{angle of rotation wrt horizontal}. \]

Our results do not aim to describe the behavior of the bridge when the torsional angle becomes large.
\(L = \) deck length \(\quad 2\ell = \) deck width \((2\ell \ll L) \).

We model the deck as a degenerate plate = a beam representing the midline of the deck with cross sections which can rotate around the beam:

\[y = \text{position of the beam}, \quad \theta = \text{angle of rotation wrt horizontal}. \]

Then the positions of the edges of the deck are

\[y \pm \ell \sin \theta \approx y \pm \ell \theta \]

since we aim to study what happens in a \textit{small torsional regime}.

Our results \textbf{do not} aim to describe the behavior of the bridge when the torsional angle becomes large.

Since the spacing between hangers is small, the hangers act as a continuous membrane connecting the cables and the deck.

We denote by \(-s(x)\) the position of the cables at rest, \(-s_0<0\) being the level of the left and right endpoints of the cables (the height of the towers). Each cable sustains the weight of half deck; then, \(s(x)\) satisfies:

\[
H_0 s''(x) = \left(M_2 + m\sqrt{1 + s'(x)^2} \right) g,
\]

\(s(0) = s(L) = s_0\). This problem admits a unique solution which, moreover, is symmetric with respect to \(x = L/2\).

If the cables had no mass (\(m=0\)) then the graph would be a parabola whereas if the deck had no mass (\(M=0\)) the graph would be a catenary. Since both have masses, the graph is something in between a parabola and a catenary.

In order to simplify notations we set \(\xi(x) := \sqrt{1 + s'(x)^2}\) = the local length of the cable at rest.
Since the spacing between hangers is small, the hangers act as a continuous membrane connecting the cables and the deck.

We denote by $-s(x)$ the position of the cables at rest, $-s_0 < 0$ being the level of the left and right endpoints of the cables (the height of the towers).
Since the spacing between hangers is small, the hangers act as a continuous membrane connecting the cables and the deck.

We denote by $-s(x)$ the position of the cables at rest, $-s_0 < 0$ being the level of the left and right endpoints of the cables (the height of the towers).

Each cable sustains the weight of half deck; then, $s(x)$ satisfies:

$$H_0 s''(x) = \left(\frac{M}{2} + m \sqrt{1 + s'(x)^2} \right) g, \quad s(0) = s(L) = s_0.$$

This problem admits a unique solution which, moreover, is symmetric with respect to $x = L/2$. If the cables had no mass ($m = 0$) then the graph would be a parabola whereas if the deck had no mass ($M = 0$) the graph would be a catenary. Since both have masses, the graph is something in between a parabola and a catenary.
Since the spacing between hangers is small, the hangers act as a continuous membrane connecting the cables and the deck.

We denote by $-s(x)$ the position of the cables at rest, $-s_0 < 0$ being the level of the left and right endpoints of the cables (the height of the towers).

Each cable sustains the weight of half deck; then, $s(x)$ satisfies:

$$H_0 s''(x) = \left(\frac{M}{2} + m \sqrt{1 + s'(x)^2} \right) g, \quad s(0) = s(L) = s_0.$$

This problem admits a unique solution which, moreover, is symmetric with respect to $x = L/2$.

If the cables had no mass ($m = 0$) then the graph would be a parabola whereas if the deck had no mass ($M = 0$) the graph would be a catenary. Since both have masses, the graph is something in between a parabola and a catenary.

In order to simplify notations we set

$$\xi(x) := \sqrt{1 + s'(x)^2} = \text{the local length of the cable at rest}.$$
When the deck is installed, the hangers are in tension and reach the length $s(x)$; if no additional load acts on the system, the equilibrium position of the deck is horizontal and the position of the cables at equilibrium is $-s(x)$.

\[-s(x) + y(x) \]

\[-s(x) \]

\[y(x) \]
When the deck is installed, the hangers are in tension and reach the length $s(x)$; if no additional load acts on the system, the equilibrium position of the deck is horizontal and the position of the cables at equilibrium is $-s(x)$.

This picture should be reproduced twice and with $\pm \theta$.
The action of the cables is the main cause of the nonlinearity of the restoring force.

The action of the cables is the main cause of the nonlinearity of the restoring force.

The flexibility of the hangers has a significant effect when the deck is very stiff. The TNB had a very flexible deck: we assume that the hangers are rigid.

The action of the cables is the main cause of the nonlinearity of the restoring force.

The flexibility of the hangers has a significant effect when the deck is very stiff. The TNB had a very flexible deck: we assume that the hangers are rigid.

The nonlinear contribution of the hangers is mainly due to their slackening which occurred at the TNB only after that the large torsional oscillations appeared. Our purpose is to understand how negligible torsional oscillations of the deck suddenly become dangerous ones, that is, to describe what happens before the slackening starts.
THE NONLINEAR NONLOCAL SYSTEM OF PDE's

\[(M + 2m\xi)y_{tt} = -Ely_{xxxx} + H_0 \left(\frac{2y_x}{\xi^2} + \frac{3s'(y_x^2 + \ell^2\theta_x^2)}{\xi^4} \right) - \frac{AE}{L_c} \left[\int_0^L y_x^2 + \ell^2\theta_x^2 \right] \frac{s''}{\xi^3} \]

\[-2AE \left[\int_0^L \frac{s'' y}{\xi^3} \right] \left(\frac{s'}{\xi} - \frac{y_x}{\xi^3} \right) x + 2AE\ell^2 \left[\int_0^L \frac{s'' \theta}{\xi^3} \right] \left(\frac{\theta_x}{\xi^3} \right) x , \]

\[(M + 2m\xi)\theta_{tt} = \frac{GK}{\ell^2} \theta_{xx} + 2H_0 \left(\frac{\theta_x}{\xi^2} + \frac{3s' \theta_x \theta_x}{\xi^4} \right) x - \frac{AE}{L_c} \left[\int_0^L y_x \theta_x \right] \frac{s''}{\xi^3} \]

\[-2AE \left[\int_0^L \frac{s'' \theta}{\xi^3} \right] \left(\frac{s'}{\xi} - \frac{y_x}{\xi^3} \right) x + 2AE \left[\int_0^L \frac{s'' y}{\xi^3} \right] \left(\frac{\theta_x}{\xi^3} \right) x . \]
\begin{align*}
(M+2m\xi)y_{tt} &= -El y_{xxxx} + H_0 \left(\frac{2y_x}{\xi^2} + \frac{3s'(y_x^2 + \ell^2 \theta_x^2)}{\xi^4} \right)_x - \frac{AE}{L_c} \left[\int_0^L \frac{y_x^2 + \ell^2 \theta_x^2}{\xi^3} \right] \frac{s''}{\xi^3} \\
- 2AE \left[\int_0^L \frac{s''}{\xi^3} \right] \left(\frac{s'}{\xi} - \frac{y_x}{\xi^3} \right)_x + 2AE\ell^2 \left[\int_0^L \frac{s''}{\xi^3} \right] \left(\frac{\theta_x}{\xi^3} \right)_x,
\end{align*}

\begin{align*}
(M_3+2m\xi)\theta_{tt} &= \frac{GK}{\ell^2} \theta_{xx} + 2H_0 \left(\frac{\theta_x}{\xi^3} + \frac{3s' y_x \theta_x}{\xi^4} \right)_x - 2AE \left[\int_0^L \frac{y_x \theta_x}{\xi^3} \right] \frac{s''}{\xi^3} \\
- 2AE \left[\int_0^L \frac{s''}{\xi^3} \right] \left(\frac{s'}{\xi} - \frac{y_x}{\xi^3} \right)_x + 2AE \left[\int_0^L \frac{s''}{\xi^3} \right] \left(\frac{\theta_x}{\xi^3} \right)_x.
\end{align*}

Boundary conditions

\begin{align*}
y(0, t) = y(L, t) = y_{xx}(0, t) = y_{xx}(L, t) = \theta(0, t) = \theta(L, t) = 0 \quad \forall t \geq 0.
\end{align*}
THE NONLINEAR NONLOCAL SYSTEM OF PDE’s

\[
(M + 2m\xi)y_{tt} = -El y_{xxxx} + H_0 \left(\frac{2y_x}{\xi^2} + \frac{3s'(y_x^2 + \ell^2 \theta_x^2)}{\xi^4} \right)_x - \frac{AE}{L_c} \left[\int_0^L \frac{y_x^2 + \ell^2 \theta_x^2}{\xi^3} \right] \frac{s''}{\xi^3} - 2AE \frac{L_c}{\ell^2} \left[\int_0^L \frac{s'' y}{\xi^3} \right] \left(\frac{s'}{\xi^3} - \frac{y_x}{\xi^3} \right)_x + 2AE \left[\int_0^L \frac{s'' \theta}{\xi^3} \right] \left(\frac{\theta_x}{\xi^3} \right)_x,
\]

\[
(M/3 + 2m\xi) \theta_{tt} = \frac{GK}{\ell^2} \theta_{xx} + 2H_0 \left(\frac{\theta_x}{\xi^2} + \frac{3s'y_x \theta_x}{\xi^4} \right)_x - \frac{2AE}{L_c} \left[\int_0^L \frac{y_x \theta_x}{\xi^3} \right] \frac{s''}{\xi^3} - 2AE \frac{L_c}{\ell^2} \left[\int_0^L \frac{s'' \theta}{\xi^3} \right] \left(\frac{s'}{\xi^3} - \frac{y_x}{\xi^3} \right)_x + 2AE \left[\int_0^L \frac{s'' y}{\xi^3} \right] \left(\frac{\theta_x}{\xi^3} \right)_x.
\]

Boundary conditions

\[
y(0, t) = y(L, t) = y_{xx}(0, t) = y_{xx}(L, t) = \theta(0, t) = \theta(L, t) = 0 \quad \forall t \geq 0.
\]

THEOREM This problem admits a unique global weak solution for any initial data.
If \(\theta(x, 0) = \theta_t(x, 0) = 0 \) then \(\theta(x, t) \equiv 0 \) and \(y \) solves

\[
(M + 2m\xi)y_{tt} + Ely_{xxxx} =
\]

\[
H_0 \left(\frac{2y_x}{\xi^2} + \frac{3s'y_x^2}{\xi^4} \right)_x - \frac{AE}{L_c} \left[\int_0^L \frac{y_x^2}{\xi^3} \frac{s''}{\xi^3} \right] - \frac{2AE}{L_c} \left[\int_0^L \frac{s''y}{\xi^3} \right] \left(\frac{s'}{\xi} - \frac{y_x}{\xi^3} \right)_x.
\]
If \(\theta(x, 0) = \theta_t(x, 0) = 0 \) then \(\theta(x, t) \equiv 0 \) and \(y \) solves

\[
(M + 2m\xi)y_{tt} + E\gamma_{xxxx} =
\]

\[
H_0 \left(\frac{2y_x}{\xi^2} + \frac{3s'y_x^2}{\xi^4} \right)_x - \frac{AE}{L_c} \left[\int_0^L \frac{y_x^2}{\xi^3} \right] \frac{s''}{\xi^3} - \frac{2AE}{L_c} \left[\int_0^L s''y \xi^3 \right] \left(\frac{s'}{\xi} - \frac{y_x}{\xi^3} \right)_x.
\]

We call **nonlinear longitudinal modes** the periodic solutions \(y \) of this equation but ...

do periodic solutions exist?
Periodic solutions exist for related nonlinear equations such as

\[
\begin{align*}
 u_{tt} - u_{xx} + f(x, u) &= 0 \quad (x, t) \in (0, \pi) \times \mathbb{R}_+, \\
 u(0, t) &= u(\pi, t) = 0 \quad t \in \mathbb{R}_+,
\end{align*}
\]

\[
\begin{align*}
 u_{tt} + u_{xxxx} + f(x, u) &= 0 \quad (x, t) \in (0, \pi) \times \mathbb{R}_+, \\
 u(0, t) &= u(\pi, t) = u_{xx}(0, t) = u_{xx}(\pi, t) = 0 \quad t \in \mathbb{R}_+,
\end{align*}
\]

\[
\begin{align*}
 u_{tt} - \left(a + b \int_0^\pi u_x^2 \right) u_{xx} &= 0 \quad (x, t) \in (0, \pi) \times \mathbb{R}_+, \\
 u(0, t) &= u(\pi, t) = 0 \quad t \in \mathbb{R}_+.
\end{align*}
\]

- P.H. Rabinowitz, CPAM (1978)
We proceed numerically. We first seek small periodic solutions close to those of the linearized problem

$$(M + 2m\xi)y_{tt} + Ely_{xxxx} = 2H_0 \left(\frac{y_x}{\xi^2}\right)_x - \frac{2AE}{L_c} \left[\int_0^L \frac{s''y}{\xi^3}\right]\frac{s''}{\xi^3}$$

that may be obtained by separating variables.

We seek approximate periodic solutions in the form

$$y(x, t) = \sum_{k=1}^{n} y_k(t) \sin\left(\frac{k\pi x}{L}\right).$$

We put $Y(t) = \{y_k(t)\}_{k=1}^{n}$, $\dot{Y}(0) = Y_0$, $\ddot{Y}(0) = Y_1$, all in \mathbb{R}^n. The PDE is so reduced to a system of nonlinear ODEs

$$\ddot{Y}(t) = G(Y(t)), \hspace{1cm} Y(0) = Y_0, \hspace{1cm} \dot{Y}(0) = Y_1.$$
We proceed numerically. We first seek small periodic solutions close to those of the linearized problem

$$
(M + 2m\xi)y_{tt} + Ely_{xxxx} = 2H_0 \left(\frac{y_x}{\xi^2}\right)_x - \frac{2AE}{L_c} \left[\int_0^L s''y \right] \frac{s''}{\xi^3}
$$

that may be obtained by separating variables.

We seek approximate periodic solutions in the form

$$
y(x, t) = \sum_{k=1}^n y_k(t) \sin \left(\frac{k\pi x}{L}\right).
$$

We put $Y(t) = \{y_k(t)\}_{k=1,...,n}$ with initial conditions $Y(0) = Y_0$ and $\dot{Y}(0) = Y_1$, all in \mathbb{R}^n. The PDE is so reduced to a system of nonlinear ODEs

$$
\ddot{Y}(t) = G(Y(t)), \quad Y(0) = Y_0, \quad \dot{Y}(0) = Y_1.
$$

We use Newton’s method to find initial vectors Y_0 and Y_1 which lead to periodic solutions.
Thus, we find numerically

an approximate periodic longitudinal solution.
Thus, we find numerically

an approximate periodic longitudinal solution.

For each k, we follow the branch of periodic solutions which starts on the k-th linear mode: these are the

k-th nonlinear longitudinal modes.
Thus, we find numerically an approximate periodic longitudinal solution.

For each k, we follow the branch of periodic solutions which starts on the k-th linear mode: these are the k-th nonlinear longitudinal modes.

♣ When little energy is inserted into the bridge, it oscillates close to a linear mode with small amplitude.
♣ On each branch, the period is increasing w.r.t. the energy.
♣ For any k-th nonlinear longitudinal mode, the k-th Fourier component is much larger than the other ones.
TWO EXAMPLES OF INITIAL DATA GENERATING PERIODIC SOLUTIONS
TWO EXAMPLES OF INITIAL DATA GENERATING PERIODIC SOLUTIONS
STRATEGY:

• we take $\theta \equiv 0$ in the original system → nonlinear PDE for y

• we approximate the nonlinear PDE with a finite system of nonlinear ODEs and we obtain approximate periodic solutions

• we put these solutions in the equation for θ → linear PDE for θ

• we approximate the PDE with a finite system of linear ODEs

• we study the stability of this system. This is the so-called linear stability.

For “most equations” it is equivalent to the Lyapunov stability.

M. Ghisi, M. Gobbino, Stability of simple modes of the Kirchhoff equation, Nonlinearity (2001)
STRATEGY:

- we take $\theta \equiv 0$ in the original system \rightarrow nonlinear PDE for y
STRATEGY:

- we take $\theta \equiv 0$ in the original system \rightarrow nonlinear PDE for y

- we approximate the nonlinear PDE with a finite system of nonlinear ODEs and we obtain approximate periodic solutions

- we put these solutions in the equation for θ \rightarrow linear PDE for θ

- we approximate the PDE with a finite system of linear ODEs

- we study the stability of this system. This is the so-called linear stability.

For “most equations” it is equivalent to the Lyapunov stability.

- M. Ghisi, M. Gobbino, Stability of simple modes of the Kirchhoff equation, Nonlinearity (2001)
STRATEGY:

• we take $\theta \equiv 0$ in the original system \rightarrow nonlinear PDE for y
• we approximate the nonlinear PDE with a finite system of nonlinear ODEs and we obtain approximate periodic solutions
• we put these solutions in the equation for θ \rightarrow linear PDE for θ

For “most equations” it is equivalent to the Lyapunov stability.

M. Ghisi, M. Gobbino, Stability of simple modes of the Kirchhoff equation, Nonlinearity (2001)
STRATEGY:

- we take $\theta \equiv 0$ in the original system \rightarrow nonlinear PDE for y
- we approximate the nonlinear PDE with a finite system of nonlinear ODEs and we obtain approximate periodic solutions
- we put these solutions in the equation for θ \rightarrow linear PDE for θ
- we approximate the PDE with a finite system of linear ODEs

For "most equations" it is equivalent to the Lyapunov stability.

M. Ghisi, M. Gobbino, Stability of simple modes of the Kirchhoff equation, Nonlinearity (2001)
STRATEGY:

- we take $\theta \equiv 0$ in the original system \rightarrow nonlinear PDE for y
- we approximate the nonlinear PDE with a finite system of nonlinear ODEs and we obtain approximate periodic solutions
- we put these solutions in the equation for θ \rightarrow linear PDE for θ
- we approximate the PDE with a finite system of linear ODEs
- we study the stability of this system.

For “most equations” it is equivalent to the Lyapunov stability.

M. Ghisi, M. Gobbino, Stability of simple modes of the Kirchhoff equation, Nonlinearity (2001)

G. Arioli & F. Gazzola - DipMat - PoliMi

Torsional Instability at the TNB
STRAATEGY:

- we take $\theta \equiv 0$ in the original system \rightarrow nonlinear PDE for y
- we approximate the nonlinear PDE with a finite system of nonlinear ODEs and we obtain approximate periodic solutions
- we put these solutions in the equation for $\theta \rightarrow$ linear PDE for θ
- we approximate the PDE with a finite system of linear ODEs
- we study the stability of this system.

This is the so-called linear stability.
STRATEGY:

• we take $\theta \equiv 0$ in the original system \rightarrow nonlinear PDE for y

• we approximate the nonlinear PDE with a finite system of nonlinear ODEs and we obtain approximate periodic solutions

• we put these solutions in the equation for $\theta \rightarrow$ linear PDE for θ

• we approximate the PDE with a finite system of linear ODEs

• we study the stability of this system.

This is the so-called linear stability.

For “most equations” it is equivalent to the Lyapunov stability.

The study of the torsional stability of a suspension bridge is so reduced to that of the linear system of ODE’s:

\[\ddot{\theta}_k(t) + \sum_{j=1}^{\nu} \chi_{jk}(t) \theta_j(t) = 0, \quad (k = 1, \ldots, \nu) \]

where the coefficients \(\chi_{jk} \) are periodic and depend on \(y(x, t) \).

Theorem

Let \(\nu = 2 \). If the longitudinal mode \(y \) is sufficiently small (that is, \(\|y\|_\infty \) is small), then the system is stable. This means that if longitudinal oscillations are sufficiently small then they are stable, that is, no large torsional oscillations appear.

Remark: small longitudinal oscillations = small energy.
The study of the torsional stability of a suspension bridge is so reduced to that of the linear system of ODE’s:

\[\ddot{\theta}_k(t) + \sum_{j=1}^{\nu} \chi_{jk}(t)\theta_j(t) = 0, \quad (k = 1, \ldots, \nu) \]

where the coefficients \(\chi_{jk} \) are periodic and depend on \(y(x, t) \).

THEOREM Let \(\nu = 2 \). If the longitudinal mode \(y \) is sufficiently small (that is, \(\| y \|_{\infty} \) is small), then the system is stable.
The study of the torsional stability of a suspension bridge is so reduced to that of the linear system of ODE’s:

\[\ddot{\theta}_k(t) + \sum_{j=1}^{\nu} \chi_{jk}(t) \theta_j(t) = 0, \quad (k = 1, \ldots, \nu) \]

where the coefficients \(\chi_{jk} \) are periodic and depend on \(y(x, t) \).

THEOREM Let \(\nu = 2 \). If the longitudinal mode \(y \) is sufficiently small (that is, \(\|y\|_{\infty} \) is small), then the system is stable.

This means that if longitudinal oscillations are sufficiently small then they are stable, that is, no large torsional oscillations appear.
The study of the torsional stability of a suspension bridge is so reduced to that of the linear system of ODE’s:

\[\ddot{\theta}_k(t) + \sum_{j=1}^{\nu} \chi_{jk}(t) \theta_j(t) = 0, \quad (k = 1, \ldots, \nu) \]

where the coefficients \(\chi_{jk} \) are periodic and depend on \(y(x, t) \).

THEOREM Let \(\nu = 2 \). If the longitudinal mode \(y \) is sufficiently small (that is, \(\|y\|_\infty \) is small), then the system is stable.

This means that if longitudinal oscillations are sufficiently small then they are stable, that is, no large torsional oscillations appear.

Remark: small longitudinal oscillations = small energy.
ARE LARGE LONGITUDINAL OSCILLATIONS UNSTABLE?

This is true in the case of the Kirchhoff equation
\[u_{tt} - \left(a + b \int_0^\pi u^2(x) \, dx \right) u_{xx} = 0 \quad (x, t) \in (0, \pi) \times \mathbb{R}^+ \]

This is true for some Hamiltonian systems
E. Berchio, F. Gazzola, C. Zanini, Which residual mode captures the energy of the dominating mode in second order Hamiltonian systems, preprint

G. Arioli & F. Gazzola - DipMat - PoliMi

Torsional Instability at the TNB
ARE LARGE LONGITUDINAL OSCILLATIONS UNSTABLE?

This is true in the case of the Kirchhoff equation

\[u_{tt} - \left(a + b \int_0^\pi u_x^2 \right) u_{xx} = 0 \quad (x, t) \in (0, \pi) \times \mathbb{R}_+ , \]

ARE LARGE LONGITUDINAL OSCILLATIONS UNSTABLE?

This is true in the case of the Kirchhoff equation

$$u_{tt} - \left(a + b \int_0^\pi u_x^2 \right) u_{xx} = 0 \quad (x, t) \in (0, \pi) \times \mathbb{R}_+ ,$$

This is true for some Hamiltonian systems
- E. Berchio, F. Gazzola, C. Zanini, *Which residual mode captures the energy of the dominating mode in second order Hamiltonian systems?*, preprint
We insert the parameters of the TNB from the Official Report
We insert the parameters of the TNB from the Official Report

We proceed **numerically**:

- take a k-th nonlinear longitudinal mode y having period T_y;
- we build the linear system of ODE's for the torsional components;
- we determine the transition matrix of such system;
- we compute its eigenvalues and consider the largest in modulus;
- when such value is larger than 1 the longitudinal mode is torsionally unstable.
We insert the parameters of the TNB from the Official Report

We proceed **numerically**:
• take a k-th nonlinear longitudinal mode y having period T_y;
We insert the parameters of the TNB from the Official Report

We proceed **numerically**:
• take a k-th nonlinear longitudinal mode y having period T_y;
• we build the linear system of ODE’s for the torsional components;
We insert the parameters of the TNB from the Official Report

We proceed **numerically**:
• take a k-th nonlinear longitudinal mode y having period T_y;
• we build the linear system of ODE’s for the torsional components;
• we determine the transition matrix of such system;
We insert the parameters of the TNB from the Official Report

We proceed **numerically**:
• take a k-th nonlinear longitudinal mode y having period T_y;
• we build the linear system of ODE’s for the torsional components;
• we determine the transition matrix of such system;
• we compute its eigenvalues and consider the largest in modulus;
We insert the parameters of the TNB from the Official Report

We proceed *numerically*:
• take a k-th nonlinear longitudinal mode y having period T_y;
• we build the linear system of ODE’s for the torsional components;
• we determine the transition matrix of such system;
• we compute its eigenvalues and consider the largest in modulus;
• when such value is larger than 1 the longitudinal mode is torsionally unstable.
THE PLOTS FOR $k=1$ AND $k=9$
Thresholds of instability

energy threshold, period at the threshold, amplitude of oscillation

\[\Delta := \max_{x,t} y(x, t) - \min_{x,t} y(x, t). \]

<table>
<thead>
<tr>
<th>Branch</th>
<th>Energy (MJ)</th>
<th>Period (s)</th>
<th>(\Delta) (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>38.</td>
<td>11.22</td>
<td>5.8</td>
</tr>
<tr>
<td>2</td>
<td>51.8</td>
<td>8.46</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>15.5</td>
<td>5.48</td>
<td>6.5</td>
</tr>
<tr>
<td>4</td>
<td>53.7</td>
<td>3.97</td>
<td>7.8</td>
</tr>
<tr>
<td>5</td>
<td>74.1</td>
<td>3.14</td>
<td>6.9</td>
</tr>
<tr>
<td>6</td>
<td>56.6</td>
<td>2.53</td>
<td>4.5</td>
</tr>
<tr>
<td>7</td>
<td>91.4</td>
<td>2.18</td>
<td>5.2</td>
</tr>
<tr>
<td>8</td>
<td>95.8</td>
<td>1.86</td>
<td>4.6</td>
</tr>
<tr>
<td>9</td>
<td>87.1</td>
<td>1.59</td>
<td>3.8</td>
</tr>
<tr>
<td>10</td>
<td>82.1</td>
<td>1.38</td>
<td>3.3</td>
</tr>
</tbody>
</table>
Thresholds of instability
energy threshold, period at the threshold, amplitude of oscillation

\[\Delta := \max_{x,t} y(x, t) - \min_{x,t} y(x, t). \]

<table>
<thead>
<tr>
<th>Branch</th>
<th>Energy (MJ)</th>
<th>Period (s)</th>
<th>(\Delta) (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>38.</td>
<td>11.22</td>
<td>5.8</td>
</tr>
<tr>
<td>2</td>
<td>51.8</td>
<td>8.46</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>15.5</td>
<td>5.48</td>
<td>6.5</td>
</tr>
<tr>
<td>4</td>
<td>53.7</td>
<td>3.97</td>
<td>7.8</td>
</tr>
<tr>
<td>5</td>
<td>74.1</td>
<td>3.14</td>
<td>6.9</td>
</tr>
<tr>
<td>6</td>
<td>56.6</td>
<td>2.53</td>
<td>4.5</td>
</tr>
<tr>
<td>7</td>
<td>91.4</td>
<td>2.18</td>
<td>5.2</td>
</tr>
<tr>
<td>8</td>
<td>95.8</td>
<td>1.86</td>
<td>4.6</td>
</tr>
<tr>
<td>9</td>
<td>87.1</td>
<td>1.59</td>
<td>3.8</td>
</tr>
<tr>
<td>10</td>
<td>82.1</td>
<td>1.38</td>
<td>3.3</td>
</tr>
</tbody>
</table>

♣ A careful look at the video and the data in the Official Report confirm that the oscillations prior to the TNB collapse were of the order of a few meters, as in our numerical results.
The Floquet Theorem states that if $\Psi(t)$ is a fundamental matrix solution of a linear system $\dot{Z} = A(t)Z$ (both A and P may be complex-valued), there exists a matrix B and a T-periodic matrix P such that $\Psi(t) = Pe^{tB}$, where the eigenvalues $\lambda_1, ..., \lambda_{2\nu}$ of e^{TB} are called the characteristic multipliers: if V_1, \ldots, V_m denote the corresponding normalized eigenvectors, then the solution Z_j satisfying the initial condition $Z_j(0) = V_j$ (for $j = 1, \ldots, m$) also satisfies $Z_j(T) = \lambda_j Z_j(0)$ and, in turn, $Z_j(nT) = \lambda_n^j Z_j(0)$ for any integer $n \geq 1$.

Whence $|\lambda_j^1|/T$ is the rate of growth of the amplitude of oscillation of Z_j.

DEFINITION

We call expansion rate the largest rate of growth:

$$ER := \max_j |\lambda_j^1|/T.$$
AN EFFECTIVE MEASURE OF TORSIONAL INSTABILITY

The **Floquet Theorem** states that if $\Psi(t)$ is a fundamental matrix solution of a linear system $\dot{Z} = A(t)Z$ (A is T-periodic) then there exists a matrix B and a T-periodic matrix P such that $\Psi(t) = P(t)e^{tB}$ (both B and P may be complex-valued).

The eigenvalues $\lambda_1, ..., \lambda_{2\nu}$ of e^{TB} are called the characteristic multipliers: if $V_1, ..., V_m$ denote the corresponding normalized eigenvectors, then the solution Z_j satisfying the initial condition $Z_j(0) = V_j$ (for $j = 1, ..., m$) also satisfies $Z_j(T) = \lambda_j Z_j(0)$ and, in turn, $Z_j(nT) = \lambda_j^n Z_j(0)$ for any integer $n \geq 1$.

DEFINITION

We call *expansion rate* the largest rate of growth:

$$ER := \max_j |\lambda_j|^{1/T}.$$
AN EFFECTIVE MEASURE OF TORSIONAL INSTABILITY

The Floquet Theorem states that if $\Psi(t)$ is a fundamental matrix solution of a linear system $\dot{Z} = A(t)Z$ (A is T-periodic) then there exists a matrix B and a T-periodic matrix P such that $\Psi(t) = P(t)e^{tB}$ (both B and P may be complex-valued).

The eigenvalues $\lambda_1, ..., \lambda_{2\nu}$ of e^{TB} are called the characteristic multipliers: if $V_1, ..., V_m$ denote the corresponding normalized eigenvectors, then the solution Z_j satisfying the initial condition $Z_j(0) = V_j$ (for $j = 1, ..., m$) also satisfies $Z_j(T) = \lambda_j Z_j(0)$ and, in turn, $Z_j(nT) = \lambda_j^n Z_j(0)$ for any integer $n \geq 1$.

Whence $|\lambda_j|^{1/T}$ is the rate of growth of the amplitude of oscillation of Z_j.

DEFINITION

We call the expansion rate $ER := \max_j |\lambda_j|^{1/T}$.

G. Arioli & F. Gazzola - DipMat - PoliMi

Torsional Instability at the TNB
AN EFFECTIVE MEASURE OF TORSIONAL INSTABILITY

The Floquet Theorem states that if $\Psi(t)$ is a fundamental matrix solution of a linear system $\dot{Z} = A(t)Z$ (A is T-periodic) then there exists a matrix B and a T-periodic matrix P such that $\Psi(t) = P(t)e^{tB}$ (both B and P may be complex-valued).

The eigenvalues $\lambda_1, ..., \lambda_{2\nu}$ of e^{TB} are called the characteristic multipliers: if $V_1, ..., V_m$ denote the corresponding normalized eigenvectors, then the solution Z_j satisfying the initial condition $Z_j(0) = V_j$ (for $j = 1, ..., m$) also satisfies $Z_j(T) = \lambda_j Z_j(0)$ and, in turn, $Z_j(nT) = \lambda_j^n Z_j(0)$ for any integer $n \geq 1$.

Whence $|\lambda_j|^{1/T}$ is the rate of growth of the amplitude of oscillation of Z_j.

AN EFFECTIVE MEASURE OF TORSIONAL INSTABILITY

The **Floquet Theorem** states that if $\Psi(t)$ is a fundamental matrix solution of a linear system $\dot{Z} = A(t)Z$ (A is T-periodic) then there exists a matrix B and a T-periodic matrix P such that $\Psi(t) = P(t)e^{tB}$ (both B and P may be complex-valued).

The eigenvalues $\lambda_1, \ldots, \lambda_{2\nu}$ of e^{TB} are called the **characteristic multipliers**: if V_1, \ldots, V_m denote the corresponding normalized eigenvectors, then the solution Z_j satisfying the initial condition $Z_j(0) = V_j$ (for $j = 1, \ldots, m$) also satisfies $Z_j(T) = \lambda_j Z_j(0)$ and, in turn, $Z_j(nT) = \lambda_j^n Z_j(0)$ for any integer $n \geq 1$.

Whence $|\lambda_j|^{1/T}$ is the rate of growth of the amplitude of oscillation of Z_j.

DEFINITION We call **expansion rate** the largest rate of growth:

$$\mathcal{ER} := \max_j |\lambda_j|^{1/T}.$$
The energy of a longitudinal mode is related to the amplitude of oscillation Δ and, for a given energy, higher modes have smaller amplitudes. Therefore, for the same amplitude of oscillation, the expansion rate is larger for the 9th and 10th longitudinal mode than for the 5th.

<table>
<thead>
<tr>
<th>Mode</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.</td>
<td>1.</td>
<td>1.0662</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>1.</td>
<td>1.00365</td>
<td>1.03904</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>1.00614</td>
<td>1.02071</td>
<td>1.02961</td>
<td>1.08141</td>
<td>1.20949</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>1.</td>
<td>1.</td>
<td>1.01287</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>1.</td>
<td>1.</td>
<td>1.00001</td>
<td>1.01521</td>
<td>1.50051</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>1.</td>
<td>1.</td>
<td>1.</td>
<td>1.09919</td>
<td>1.16332</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>1.</td>
<td>1.</td>
<td>1.</td>
<td>1.</td>
<td>1.09852</td>
<td>1.58567</td>
<td>1.97158</td>
</tr>
<tr>
<td>8</td>
<td>1.</td>
<td>1.</td>
<td>1.</td>
<td>1.</td>
<td>1.00112</td>
<td>1.66552</td>
<td>—</td>
</tr>
<tr>
<td>9</td>
<td>1.</td>
<td>1.</td>
<td>1.01322</td>
<td>1.01353</td>
<td>1.24852</td>
<td>1.76429</td>
<td>2.12488</td>
</tr>
<tr>
<td>10</td>
<td>1.</td>
<td>1.</td>
<td>1.</td>
<td>1.</td>
<td>1.25447</td>
<td>1.73715</td>
<td>2.05263</td>
</tr>
</tbody>
</table>
The energy of a longitudinal mode is related to the amplitude of oscillation Δ and, for a given energy, higher modes have smaller amplitudes. Therefore, for the same amplitude of oscillation, the expansion rate is larger for the 9th and 10th longitudinal mode than for the 5th.
From the **Official Report** we learn that:

- In the months prior to the collapse, one principal mode of oscillation prevailed and the modes of oscillation frequently changed, moreover; seven different motions have been identified on the main span... from the simplest, that of no nodes, to the more complex, that of seven nodes (only once).

- On the day of the collapse, the bridge appeared to be behaving in the customary manner and the motions were considerably less than had occurred many times before.

- On the day of the collapse, the torsional oscillations started suddenly and the motions, which a moment before had involved a number of waves (nine or ten) had shifted almost instantly to two.

These observations show that the transfer of energy (from longitudinal to torsional) depends on the particular excited mode.
From the **Official Report** we learn that:

- in the months prior to the collapse *one principal mode of oscillation prevailed* and that *the modes of oscillation frequently changed*, moreover *seven different motions have been identified on the main span* ... *from the simplest, that of no nodes, to the more complex, that of seven nodes (only once)*
From the **Official Report** we learn that:

- in the months prior to the collapse, *one principal mode of oscillation prevailed* and that *the modes of oscillation frequently changed*, moreover *seven different motions have been identified on the main span* ... from the simplest, that of no nodes, to the more complex, that of seven nodes (only once)

- on the day of the collapse, *the bridge appeared to be behaving in the customary manner* and the motions *were considerably less than had occurred many times before*
From the **Official Report** we learn that:

- in the months prior to the collapse *one principal mode of oscillation prevailed* and that *the modes of oscillation frequently changed*, moreover *seven different motions have been identified on the main span ... from the simplest, that of no nodes, to the more complex, that of seven nodes (only once)*

- on the day of the collapse, *the bridge appeared to be behaving in the customary manner* and the motions *were considerably less than had occurred many times before*

- on the day of the collapse, the torsional oscillations started suddenly and *the motions, which a moment before had involved a number of waves (nine or ten) had shifted almost instantly to two*
From the **Official Report** we learn that:

- in the months prior to the collapse, one principal mode of oscillation prevailed and that the modes of oscillation frequently changed, moreover seven different motions have been identified on the main span ... from the simplest, that of no nodes, to the more complex, that of seven nodes (only once)

- on the day of the collapse, the bridge appeared to be behaving in the customary manner and the motions were considerably less than had occurred many times before

- on the day of the collapse, the torsional oscillations started suddenly and the motions, which a moment before had involved a number of waves (nine or ten) had shifted almost instantly to two

These observations show that the transfer of energy (from longitudinal to torsional) depends on the particular excited mode.
<table>
<thead>
<tr>
<th>Mode</th>
<th>Δ (m)</th>
<th>4 MJ</th>
<th>6 MJ</th>
<th>8 MJ</th>
<th>10 MJ</th>
<th>12 MJ</th>
<th>14 MJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.8</td>
<td>1.</td>
<td>1.0662</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>1.00365</td>
<td>1.03904</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>6.5</td>
<td>1.02071</td>
<td>1.02961</td>
<td>1.08141</td>
<td>1.20949</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>7.8</td>
<td>1.</td>
<td>1.01287</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>6.9</td>
<td>1.</td>
<td>1.00001</td>
<td>1.01521</td>
<td>1.50051</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>4.5</td>
<td>1.</td>
<td>1.09919</td>
<td>1.16332</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>5.2</td>
<td>1.</td>
<td>1.</td>
<td>1.09852</td>
<td>1.58567</td>
<td>1.97158</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4.6</td>
<td>1.</td>
<td>1.</td>
<td>1.00112</td>
<td>1.66552</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>9</td>
<td>3.8</td>
<td>1.</td>
<td>1.01322</td>
<td>1.01353</td>
<td>1.24852</td>
<td>1.76429</td>
<td>2.12488</td>
</tr>
<tr>
<td>10</td>
<td>3.3</td>
<td>1.</td>
<td>1.</td>
<td>1.25447</td>
<td>1.73715</td>
<td>2.05263</td>
<td></td>
</tr>
</tbody>
</table>

This Table explains why torsional oscillations did not appear earlier even in presence of larger longitudinal oscillations:

there are longitudinal modes which have a very low expansion rate;

the 9th and 10th mode appear more prone to generate torsional oscillations because they have large expansion rate.
OUR EXPLANATION OF THE TNB COLLAPSE

It is clear that in absence of wind or external loads the deck of a bridge remains still. When the wind hits a bluff body (such as the deck of the TNB) the flow is modified and goes around the body. Behind the deck, or a "hidden part" of it, the flow creates vortices which are, in general, asymmetric. This asymmetry generates a forcing lift which starts the vertical oscillations of the deck.
OUR EXPLANATION OF THE TNB COLLAPSE

It is clear that in absence of wind or external loads the deck of a bridge remains still.
OUR EXPLANATION OF THE TNB COLLAPSE

It is clear that in absence of wind or external loads the deck of a bridge remains still.

When the wind hits a bluff body (such as the deck of the TNB) the flow is modified and goes around the body. Behind the deck, or a “hidden part” of it, the flow creates vortices which are, in general, asymmetric.

This asymmetry generates a forcing lift which starts the vertical oscillations of the deck.
The vortices induced by the wind increase the internal energy of the structure and generate wide longitudinal oscillations which look periodic in time.
The vortices induced by the wind increase the internal energy of the structure and generate wide longitudinal oscillations which look periodic in time.

This is the point where our analysis starts, that is, when the longitudinal oscillations of the structure reach a periodic motion which is maintained in amplitude by a somehow perfect equilibrium between the input of energy from the wind and internal dissipation.
The vortices induced by the wind increase the internal energy of the structure and generate wide longitudinal oscillations which look periodic in time.

This is the point where our analysis starts, that is, when the longitudinal oscillations of the structure reach a periodic motion which is maintained in amplitude by a somehow perfect equilibrium between the input of energy from the wind and internal dissipation.

We have seen that, in such situation, if the longitudinal oscillation is sufficiently large then a structural instability appears: this is the onset of torsional oscillations.
The vortices induced by the wind increase the internal energy of the structure and generate wide longitudinal oscillations which look periodic in time.

This is the point where our analysis starts, that is, when the longitudinal oscillations of the structure reach a periodic motion which is maintained in amplitude by a somehow perfect equilibrium between the input of energy from the wind and internal dissipation. We have seen that, in such situation, if the longitudinal oscillation is sufficiently large then a structural instability appears: this is the onset of torsional oscillations.

NEXT STEPS: to obtain a more accurate description of the dynamics of suspension bridges, take into account also the behavior of the aerodynamic and dissipation effects after the appearance of the torsional oscillations.
THANK YOU FOR YOUR ATTENTION
Torsional Instability at the TNB