Multi-layer radial solutions for a supercritical Neumann problem

Massimo Grossi (Università di Roma I)

..and
Multi-layer radial solutions for a supercritical Neumann problem

Massimo Grossi (Università di Roma I)
..and

Denis Bonheure (ULB, Bruxelles)
Multi-layer radial solutions for a supercritical Neumann problem

Massimo Grossi (Università di Roma I)

..and

Denis Bonheure (ULB, Bruxelles)

Benedetta Noris (ULB, Bruxelles)
Multi-layer radial solutions for a supercritical Neumann problem

Massimo Grossi (Università di Roma I)

..and

Denis Bonheure (ULB, Bruxelles)

Benedetta Noris (ULB, Bruxelles)

Susanna Terracini (Univ. di Torino)
Let us consider the following problem

\[
\begin{cases}
-\Delta u + u = u^p & \text{in } B_1 \\
u > 0 & \text{in } B_1, \\
\frac{\partial u}{\partial \nu} = 0 & \text{on } \partial B_1
\end{cases}
\]

with \(N \geq 2 \).
This problem has a long history! Let us start by the Dirichlet case.
The Dirichlet case

Some classical results

Let us consider the following problem

\[
\begin{cases}
-\Delta u + u = u^p & \text{in } B_1 \\
u > 0 & \text{in } B_1, \\
u = 0 & \text{on } \partial B_1
\end{cases}
\]

with \(N \geq 2 \).
The Dirichlet case

Some classical results

Let us consider the following problem

\[
\begin{cases}
-\Delta u + u = u^p & \text{in } B_1 \\
u > 0 & \text{in } B_1, \\
u = 0 & \text{on } \partial B_1
\end{cases}
\]

with \(N \geq 2 \).

- All solutions are radial (Gidas, Ni and Nirenberg).
The Dirichlet case

Some classical results

Let us consider the following problem

\[
\begin{cases}
-\Delta u + u = u^p & \text{in } B_1 \\
u > 0 & \text{in } B_1, \\
u = 0 & \text{on } \partial B_1
\end{cases}
\]

with \(N \geq 2 \).

- All solutions are radial (Gidas, Ni and Nirenberg).
- There is exactly one solution for \(1 < p < \frac{N+2}{N-2} \).
Let us consider the following problem

\[
\begin{cases}
-\Delta u + u = u^p & \text{in } B_1 \\
u > 0 & \text{in } B_1, \\
u = 0 & \text{on } \partial B_1
\end{cases}
\]

with $N \geq 2$.

- All solutions are radial (Gidas, Ni and Nirenberg).
- There is exactly one solution for $1 < p < \frac{N+2}{N-2}$.
- There are no solutions for $p \geq \frac{N+2}{N-2}$ (Pohozaev identity).
Let us consider the following problem

\[\begin{cases} -\Delta u + u = u^p & \text{in } B_1 \\ u > 0 & \text{in } B_1, \\ u = 0 & \text{on } \partial B_1 \end{cases} \]

with \(N \geq 2 \).

The Neumann problem is much more involved...
The Neumann case

Let us consider the following problem

\[
\begin{cases}
-\Delta u + u = u^p & \text{in } B_1 \\
u > 0 & \text{in } B_1, \\
u = 0 & \text{on } \partial B_1
\end{cases}
\]

with \(N \geq 2 \).

The Neumann problem is much more involved...
First note that we have the trivial solution \(u \equiv 1 \).
Then we are interested in the existence of nonconstant solutions.
Let us consider the following problem

\[
\begin{cases}
-\Delta u + u = u^p & \text{in } B_1 \\
u > 0 & \text{in } B_1, \\
u = 0 & \text{on } \partial B_1
\end{cases}
\]

with \(N \geq 2 \).

The Neumann problem is much more involved...

First note that we have the trivial solution \(u \equiv 1 \).

Then we are interested in the existence of nonconstant solutions. Moreover all previous results in the Dirichlet case are false! Indeed,
Let us consider the following problem

\[
\begin{cases}
-\Delta u + u = u^p & \text{in } B_1 \\
u > 0 & \text{in } B_1 \\
u = 0 & \text{on } \partial B_1
\end{cases}
\]

with \(N \geq 2 \).

The Neumann problem is much more involved...

First note that we have the trivial solution \(u \equiv 1 \).

Then we are interested in the existence of \textit{nonconstant} solutions.

Moreover all previous results in the Dirichlet case are false! Indeed,

<table>
<thead>
<tr>
<th>Dirichlet problem</th>
<th>Neumann problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) All solutions are radial</td>
<td>(i) There exist nonradial solutions</td>
</tr>
<tr>
<td>(ii) Uniqueness for (1 < p < \frac{N+2}{N-2})</td>
<td>(ii) Nonuniqueness results</td>
</tr>
<tr>
<td>(iii) No solutions for (p \geq \frac{N+2}{N-2})</td>
<td>(iii) Existence for any (p > 1).</td>
</tr>
</tbody>
</table>
It is convenient to set our problem in a ball of radius R. So let us consider,

\[
\begin{cases}
-\Delta u + u = u^p & \text{in } B_R \\
u > 0 & \text{in } B_R, \\
u = 0 & \text{on } \partial B_R
\end{cases}
\]
It is convenient to set our problem in a ball of radius R. So let us consider,

$$
\begin{cases}
-\Delta u + u = u^p & \text{in } B_R \\
u > 0 & \text{in } B_R, \\
u = 0 & \text{on } \partial B_R
\end{cases}
$$

Theorem, C.-S. Lin and W. M. Ni

There exist radius R_0 and R_1 such that

- If $1 < p < \frac{N+2}{N-2}$ there exists $R_0 > 0$ such that for any $R \leq R_0$ the only solution is $u \equiv 1$.
- For any $p > 1$ there exists $R_1 = R_1(p)$ such that for any $R \geq R_1$ there exists a nonconstant solution.
In 2011 E. Serra and P. Tilli introduced the following interesting constraint,

\[M = \{ u \in H^1_{\text{rad}}(B_R) | u \geq 0, u(r) \leq u(s) \text{ for } 0 \leq r \leq s \leq 1 \}. \]
An interesting constraint

In 2011 E. Serra and P. Tilli introduced the following interesting constraint,

\[M = \{ u \in H^1_{rad}(B_R) \mid u \geq 0, u(r) \leq u(s) \text{ for } 0 \leq r \leq s \leq 1 \} . \]

Note that the function in \(M \) cannot concentrate, unless to have “infinite” \(H^1 \) norm.
In 2011 E. Serra and P. Tilli introduced the following interesting constraint,

\[M = \{ u \in H^1_{rad}(B_R) | u \geq 0, u(r) \leq u(s) \text{ for } 0 \leq r \leq s \leq 1 \} . \]

Note that the function in \(M \) cannot concentrate, unless to have “infinite” \(H^1 \) norm. They proved the following result,

Theorem, E. Serra and P. Tilli (2011)

Assume that \(a(r) \in L^1(B_1) \) is a radial, increasing, positive and nonconstant function. Then for any \(p > 1 \) the problem

\[
\begin{align*}
-\Delta u + u &= a(|x|)u^p \quad \text{in } B_1 \\
u &> 0 \quad \text{in } B_1, \\
u &= 0 \quad \text{on } \partial B_1
\end{align*}
\]

admits at least one radially increasing solution.
The previous result was generalized to the case $a \equiv 1$ by

Assume that $p > \lambda_2(B_1)$. Then the problem

\[
\begin{cases}
-\Delta u + u = u^p & \text{in } B_1, \\
u > 0 & \text{in } B_1, \\
u = 0 & \text{on } \partial B_1
\end{cases}
\]

admits at least one radially increasing solution.
The previous results lead to the following conjecture,
The previous results lead to the following conjecture,

Open problem

Let us consider the problem,

\[
\begin{aligned}
-\Delta u + u &= u^p \quad \text{in } \Omega \\
\quad u &> 0 \quad \text{in } \Omega, \\
\quad u &= 0 \quad \text{on } \partial \Omega,
\end{aligned}
\]

where Ω is a convex domain.
The previous results lead to the following conjecture,

Open problem

Let us consider the problem,

\[
\begin{align*}
-\Delta u + u &= u^p & \text{in } \Omega \\
u &= 0 & \text{on } \partial \Omega, \\
u > 0 & \quad \text{in } \Omega,
\end{align*}
\]

where \(\Omega \) is a convex domain. Then, for any \(p > 1 \) (not too small), there exists a solution \(u_p \) satisfying,

\[
(x - x_p) \cdot \nabla u_p(x) \geq 0
\]

for some \(x_p \in \Omega \) and for any \(x \in \Omega \).
The case where $p \to +\infty$ (Dirichlet problem)

If the exponent p goes to $+\infty$ we have additional information. Let us recall the following result in the Dirichlet case,
The case where $p \to +\infty$ (Dirichlet problem)

If the exponent p goes to $+\infty$ we have additional information. Let us recall the following result in the Dirichlet case,

Let u_p be the radial solution of the problem

$$\begin{cases}
-\Delta u = u^p & \text{in } A = \{ x \in \mathbb{R}^N | a \leq |x| \leq b \} \\
u > 0 & \text{in } A = \{ x \in \mathbb{R}^N | a \leq |x| \leq b \} \\
u = 0 & \text{on } |x| = a \text{ and } |x| = b.
\end{cases}$$

Then, as $p \to +\infty$ we have that,
The case where $p \to +\infty$ (Dirichlet problem)

If the exponent p goes to $+\infty$ we have additional information. Let us recall the following result in the Dirichlet case,

Let u_p be the radial solution of the problem

$$
\begin{aligned}
-\Delta u &= u^p & \text{in } A = \{x \in \mathbb{R}^N | a \leq |x| \leq b\} \\
\quad u &> 0 & \text{in } A = \{x \in \mathbb{R}^N | a \leq |x| \leq b\} \\
\quad u &= 0 & \text{on } |x| = a \text{ and } |x| = b.
\end{aligned}
$$

Then, as $p \to +\infty$ we have that,

(i) $\|u_p\|_\infty \to 1,$
The case where $p \to +\infty$ (Dirichlet problem)

If the exponent p goes to $+\infty$ we have additional information. Let us recall the following result in the Dirichlet case,

Let u_p be the radial solution of the problem

\[
\begin{cases}
-\Delta u = u^p & \text{in } A = \{ x \in \mathbb{R}^N | a \leq |x| \leq b \} \\
u > 0 & \text{in } A = \{ x \in \mathbb{R}^N | a \leq |x| \leq b \} \\
u = 0 & \text{on } |x| = a \text{ and } |x| = b.
\end{cases}
\]

Then, as $p \to +\infty$ we have that,

(i) $\|u_p\|_\infty \to 1$,

(ii) $u_p(r) \to \frac{G(r,r_0)}{G(r_0,r_0)}$ where $G(r,s)$ is the Green function of the operator $-u'' - \frac{N-1}{r} u'$ and r_0 is given by

\[
r_0 = \left(\frac{a^{2-N} + b^{2-N}}{2} \right)^{\frac{1}{2-N}}
\]
Ideas of the proof of the previous result

Why is the maximum of u_p going to 1?
Let us recall that u_p can be characterized as

$$I_p = \inf_{u \in H^1_0(A)} \int_{B^1} |\nabla u|^2 \left(\int_{B^1} |u|^{p+1} + 1 \right)^{p+1}$$

It is not difficult to see that $0 < C_0 \leq I_p \leq C_1$. Then,

(a) If $||u_p||_{\infty} \rightarrow M > 1$ we get that $u_p \rightarrow +\infty$ in a set of positive measure and so $I_p \rightarrow +\infty$.

(b) On the other hand if $||u_p||_{\infty} \rightarrow M < 1$ we get that $u_p \rightarrow 0$ uniformly and this is not possible since 0 is an isolated solution.

(ii) Why is u_p converging to $G(r, r_0)$?
By the previous step we derive that $u_p(r) \rightarrow u < 1$ far away from the maximum point. Passing to the limit we get that $-u'' - N_0 r u' = 0$ in (a, b) and the claim follows.
(i) Why is the maximum of u_p going to 1?
Ideas of the proof of the previous result

(i) Why is the maximum of u_p going to 1?
Let us recall that u_p can be characterized as

$$I_p = \inf_{u \in H_0^1(A)} \frac{\int_{B_1} |\nabla u|^2}{\left(\int_{B_1} |u|^{p+1} \right)^{\frac{2}{p+1}}}$$
(i) Why is the maximum of u_p going to 1?
Let us recall that u_p can be characterized as

$$I_p = \inf_{u \in H^1_0(A)} \frac{\int_{B_1} |\nabla u|^2}{\left(\int_{B_1} |u|^{p+1} \right)^{\frac{2}{p+1}}}$$

It is not difficult to see that $0 < C_0 \leq I_p \leq C_1$. Then,
Ideas of the proof of the previous result

(i) Why is the maximum of u_p going to 1?
Let us recall that u_p can be characterized as

$$I_p = \inf_{u \in H_0^1(A)} \frac{\int_{B_1} |\nabla u|^2}{\left(\int_{B_1} |u|^{p+1} \right)^{\frac{2}{p+1}}}$$

It is not difficult to see that $0 < C_0 \leq I_p \leq C_1$. Then,

(a) If $\|u_p\|_\infty \to M > 1$ we get that $u_p \to +\infty$ in a set of positive measure and so $I_p \to +\infty$.

(i) Why is the maximum of u_p going to 1?
Let us recall that u_p can be characterized as

$$I_p = \inf_{u \in H^1_0(A)} \frac{\int_{B_1} |\nabla u|^2}{\left(\int_{B_1} |u|^{p+1} \right)^{\frac{2}{p+1}}}$$

It is not difficult to see that $0 < C_0 \leq I_p \leq C_1$. Then,

(a) If $\|u_p\|_{\infty} \to M > 1$ we get that $u_p \to +\infty$ in a set of positive measure and so $I_p \to +\infty$.

(b) On the other hand if $\|u_p\|_{\infty} \to M < 1$ we get that $u_p \to 0$ uniformly and this is not possible since 0 is an isolated solution.
Ideas of the proof of the previous result

(i) Why is the maximum of \(u_p \) going to 1?
Let us recall that \(u_p \) can be characterized as

\[
I_p = \inf_{u \in H^1_0(A)} \frac{\int_{B_1} |\nabla u|^2}{\left(\int_{B_1} |u|^{p+1} \right)^{2/(p+1)}}
\]

It is not difficult to see that \(0 < C_0 \leq I_p \leq C_1 \). Then,

(a) If \(||u_p||_\infty \to M > 1 \) we get that \(u_p \to +\infty \) in a set of positive measure and so \(I_p \to +\infty \).

(b) On the other hand if \(||u_p||_\infty \to M < 1 \) we get that \(u_p \to 0 \) uniformly and this is not possible since 0 is an isolated solution.

(ii) Why is \(u_p \) converging to \(\frac{G(r,r_0)}{G(r_0,r_0)} \)?
Ideas of the proof of the previous result

(i) Why is the maximum of u_p going to 1?
 Let us recall that u_p can be characterized as
 \[
 I_p = \inf_{u \in H_0^1(A)} \frac{\int_{B_1} |\nabla u|^2}{\left(\int_{B_1} |u|^{p+1}\right)^{\frac{2}{p+1}}}
 \]
 It is not difficult to see that $0 < C_0 \leq I_p \leq C_1$. Then,
 (a) If $\|u_p\|_{\infty} \to M > 1$ we get that $u_p \to +\infty$ in a set of positive
 measure and so $I_p \to +\infty$.
 (b) On the other hand if $\|u_p\|_{\infty} \to M < 1$ we get that $u_p \to 0$
 uniformly and this is not possible since 0 is an isolated solution.

(ii) Why is u_p converging to $\frac{G(r,r_0)}{G(r_0,r_0)}$?
 By the previous step we derive that $u_p(r) \to u < 1$ far away from
 the maximum point. Passing to the limit we get that
 $-u'' - \frac{N-1}{r}u' = 0$ in (a,b) and the claim follows.
In the case of Neumann boundary condition we have that the maximum point is located at the boundary,
The case where $p \to +\infty$ (Neumann problem)

In the case of Neumann boundary condition we have that the maximum point is located at the boundary,

Let u_p be the solution of the problem

$$
\begin{aligned}
-\Delta u + u &= u^p \quad \text{in } B_1 \\
 u &> 0 \quad \text{in } B_1, \\
 u &= 0 \quad \text{on } \partial B_1
\end{aligned}
$$

Then, as $p \to +\infty$, there exists a solution u_p such that

$$
\lim_{p \to +\infty} u_p(r) = G(r, 1),
$$

where $G(r, s)$ is the Green function of $-u'' - N - 1 + u$ with $u'(0) = u'(1) = 0$.

Finally, u minimizes the following infimum,

$$
\inf_{u \in H^1_{rad}(B_1)} \left\{ \int_{B_1} |\nabla u|^2 + u^2 \left(\int_{B_1} |u|^p + 1 \right)^{p+1} \right\}
$$

subject to $u \leq c$ in $B_1 \setminus B_\rho$.
The case where $p \to +\infty$ (Neumann problem)

In the case of Neumann boundary condition we have that the maximum point is located at the boundary,

\[
\text{and (2012)}
\]

Let u_p be the solution of the problem

\[
\begin{aligned}
-\Delta u + u &= u^p & \text{in } B_1 \\
u &> 0 & \text{in } B_1, \\
u &= 0 & \text{on } \partial B_1
\end{aligned}
\]

Then, as $p \to +\infty$, there exists a solution u_p such that

\[
u_p(r) \to \frac{G(r, 1)}{G(1, 1)},
\]

where $G(r, s)$ is the Green function of $-u'' - \frac{N-1}{r} + u$ with $u'(0) = u'(1) = 0$.
The case where $p \to +\infty$ (Neumann problem)

In the case of Neumann boundary condition we have that the maximum point is located at the boundary,

\[
\text{and (2012)}
\]

Let u_p be the solution of the problem

\[
\begin{cases}
-\Delta u + u = u^p & \text{in } B_1 \\
u > 0 & \text{in } B_1, \\
u = 0 & \text{on } \partial B_1
\end{cases}
\]

Then, as $p \to +\infty$, there exists a solution u_p such that

\[
u_p(r) \to \frac{G(r, 1)}{G(1, 1)},
\]

where $G(r, s)$ is the Green function of $-u'' - \frac{N-1}{r} + u$ with $u'(0) = u'(1) = 0$. Finally u minimizes the following infimum,

\[
\inf_{u \in H^1_{rad}(B_1)} \left\{ \frac{\int_{B_1} \left| \nabla u \right|^2 + u^2}{\left(\int_{B_1} u^{p+1} \right)^{2/(p+1)}} \right\} \quad \text{such that } u \leq c \text{ in } B_1 \setminus B_\rho
\]
Here we recall some properties of the Green function of the “radial” laplacian operator.
Some remarks on the Green function

Here we recall some properties of the Green function of the “radial” laplacian operator.

Properties of the Green function

The Green function $G(r, s)$ of the operator $-u'' - \frac{N-1}{r} u' + u$ with Neumann boundary condition is defined as

$$ \begin{cases}
 -G_{rr}(r, s) - \frac{N-1}{r} G_r(r, s) + G(r, s) = \delta_s(r) & \text{in } (0, 1) \\
 G_r(0, s) = G_r(1, s) = 0 & \text{for any } s \in (0, 1).
\end{cases} $$
Some remarks on the Green function

Here we recall some properties of the Green function of the “radial” laplacian operator.

Properties of the Green function

The Green function \(G(r, s) \) of the operator \(-u'' - \frac{N-1}{r} u' + u \) with Neumann boundary condition is defined as

\[
\begin{cases}
-G_{rr}(r, s) - \frac{N-1}{r} G_{r}(r, s) + G(r, s) = \delta_s(r) & \text{in } (0, 1) \\
G_{r}(0, s) = G_{r}(1, s) = 0 & \text{for any } s \in (0, 1).
\end{cases}
\]

Note that \(G(r, s) \) is bounded in \(L^\infty(0, 1) \).
Some remarks on the Green function

Here we recall some properties of the Green function of the “radial” laplacian operator.

Properties of the Green function

The Green function $G(r, s)$ of the operator $-u'' - \frac{N-1}{r}u' + u$ with Neumann boundary condition is defined as

$$\begin{cases} -G_{rr}(r, s) - \frac{N-1}{r}G_r(r, s) + G(r, s) = \delta_s(r) & \text{in } (0, 1) \\ G_r(0, s) = G_r(1, s) = 0 & \text{for any } s \in (0, 1). \end{cases}$$

Note that $G(r, s)$ is bounded in $L^\infty(0, 1)$ and its graph is given by
Some remarks on the Green function

Here we recall some properties of the Green function of the “radial” laplacian operator.

Properties of the Green function

The Green function $G(r, s)$ of the operator $-u'' - \frac{N-1}{r} u' + u$ with Neumann boundary condition is defined as

$$\begin{cases} -G_{rr}(r, s) - \frac{N-1}{r} G_r(r, s) + G(r, s) = \delta_s(r) \quad \text{in} \quad (0, 1) \\ G_r(0, s) = G_r(1, s) = 0 \quad \text{for any} \quad s \in (0, 1). \end{cases}$$

Note that $G(r, s)$ is bounded in $L^\infty(0, 1)$ and its graph is given by

If $N = 3$ the Green function can be explicitly computed,

$$G(r, s) = \begin{cases} \frac{e^r - e^{-r}}{2r} e^s s \quad \text{for} \quad r \leq s \\ \frac{e^s - e^{-s}}{2r} e^r s \quad \text{for} \quad r > s. \end{cases}$$
Let $k > 0$ be an integer.
Let $k > 0$ be an integer. Then there exists $p(k)$ such that for any $p > p(k)$
Let $k > 0$ be an integer. Then there exists $p(k)$ such that for any $p > p(k)$ there exists a radial solution $u_p(r)$ having exactly k maximum points $\alpha_{1,p}, \ldots, \alpha_{k,p}$. Furthermore we have that

(i) $u_p(r)$ converges pointwise to $\sum_{j=1}^{k} A_j G(r, \alpha_j)$, where (A_1, \ldots, A_k) is a solution of the system

$$k \sum_{j=1}^{k} A_j G(\alpha_i, \alpha_j) = 1, \quad i = 1, \ldots, k.$$

(ii) $(\alpha_{1,p}, \ldots, \alpha_{k,p}) \to (\alpha_1, \ldots, \alpha_k)$ as $p \to \infty$ and $(\alpha_1, \ldots, \alpha_k)$ is a critical point of the function

$$\phi(\alpha_1, \ldots, \alpha_k) = \inf \{ \| u \|_{H^1_{rad}(B_1)} : u(\alpha_1) = \ldots = u(\alpha_k) = 1 \},$$

in the set $0 < \alpha_1 < \ldots < \alpha_k < 1$. We will see that $\phi(\alpha_1, \ldots, \alpha_k) = k \sum_{i=1}^{k} A_i \alpha_i^{N-1-j}$.

Let $k > 0$ be an integer. Then there exists $p(k)$ such that for any $p > p(k)$ there exists a radial solution $u_p(r)$ having exactly k maximum points $\alpha_{1,p}, \ldots, \alpha_{k,p}$. Furthermore we have that

(i) $u_p(r)$ converges pointwise to $\sum_{j=1}^{k} A_j G(r, \alpha_j)$,
The main result

Let $k > 0$ be an integer. Then there exists $p(k)$ such that for any $p > p(k)$ there exists a radial solution $u_p(r)$ having exactly k maximum points $\alpha_{1,p}, \ldots, \alpha_{k,p}$. Furthermore we have that

(i) $u_p(r)$ converges pointwise to $\sum_{j=1}^{k} A_j G(r, \alpha_j)$, where (A_1, \ldots, A_k) is a solution of the system

$$\sum_{j=1}^{k} A_j G(\alpha_j, \alpha_j) = 1, \quad i = 1, \ldots, k.$$
Let \(k > 0 \) be an integer. Then there exists \(p(k) \) such that for any \(p > p(k) \) there exists a radial solution \(u_p(r) \) having exactly \(k \) maximum points \(\alpha_1, \ldots, \alpha_k \). Furthermore we have that

(i) \(u_p(r) \) converges pointwise to \(\sum_{j=1}^{k} A_j G(r, \alpha_j) \), where \((A_1, \ldots, A_k) \) is a solution of the system

\[
\sum_{j=1}^{k} A_j G(\alpha_i, \alpha_j) = 1, \quad i = 1, \ldots, k.
\]

(ii) \((\alpha_1, p, \ldots, \alpha_k, p) \to (\alpha_1, \ldots, \alpha_k) \) as \(p \to \infty \).
Let $k > 0$ be an integer. Then there exists $p(k)$ such that for any $p > p(k)$ there exists a radial solution $u_p(r)$ having exactly k maximum points $\alpha_{1,p}, \ldots, \alpha_{k,p}$. Furthermore, we have that

(i) $u_p(r)$ converges pointwise to $\sum_{j=1}^{k} A_j G(r, \alpha_j)$, where (A_1, \ldots, A_k) is a solution of the system

$$\sum_{j=1}^{k} A_j G(\alpha_i, \alpha_j) = 1, \quad i = 1, \ldots, k.$$

(ii) $(\alpha_{1,p}, \ldots, \alpha_{k,p}) \to (\alpha_1, \ldots, \alpha_k)$ as $p \to \infty$ and $(\alpha_1, \ldots, \alpha_k)$ is a critical point of the function

$$\varphi(\alpha_1, .., \alpha_k) = \inf\{\|u\|_{H^1_{\text{rad}}(B_1)}^2 \colon u(\alpha_1) = \ldots = u(\alpha_k) = 1\},$$
in the set $0 < \alpha_1 < \ldots < \alpha_k < 1$.
The main result

Let $k > 0$ be an integer. Then there exists $p(k)$ such that for any $p > p(k)$ there exists a radial solution $u_p(r)$ having exactly k maximum points $\alpha_{1,p}, \ldots, \alpha_{k,p}$. Furthermore we have that

(i) $u_p(r)$ converges pointwise to $\sum_{j=1}^{k} A_j G(r, \alpha_j)$, where (A_1, \ldots, A_k) is a solution of the system

$$
\sum_{j=1}^{k} A_j G(\alpha_i, \alpha_j) = 1, \quad i = 1, \ldots, k.
$$

(ii) $(\alpha_{1,p}, \ldots, \alpha_{k,p}) \to (\alpha_1, \ldots, \alpha_k)$ as $p \to \infty$ and $(\alpha_1, \ldots, \alpha_k)$ is a critical point of the function

$$
\varphi(\alpha_1, \ldots, \alpha_k) = \inf \{ \|u\|_{H^1_{rad}(B_1)}^2 : u(\alpha_1) = \ldots = u(\alpha_k) = 1 \},
$$

in the set $0 < \alpha_1 < \ldots < \alpha_k < 1$.

We will see that $\varphi(\alpha_1, \ldots, \alpha_k) = \sum_{i=1}^{k} A_i \alpha_i^{N-1}$.
The case of one peak

There exists \(\bar{\rho} \) such that for any \(\rho > \bar{\rho} \) there exists a radial solution \(u_\rho(r) \) having exactly 1 maximum point \(\alpha_1, \rho \) such that

(i) \(u_\rho(r) \to A G(r, \alpha_1) = G(r, \alpha_1) G(\alpha_1, \alpha_1) \).

So \(A_1 = 1 G(\alpha_1, \alpha_1) \),

(ii) \(\alpha_1, \rho \to \alpha_1 \) as \(\rho \to \infty \) and \(\alpha_1 \) is a critical point of the function \(\phi(\alpha_1) = \inf \{ \| u \|_{H^1_{rad}(B_1)} : u(\alpha_1) = 1 \} \), in the set \(0 < \alpha_1 < 1 \).

Moreover we have that \(\phi(\alpha_1) = A_1 \alpha_{N-1} = \alpha_{N-1} G(\alpha_1, \alpha_1) \).
There exists \bar{p} such that for any $p > \bar{p}$ there exists a radial solution $u_p(r)$ having exactly 1 maximum point $\alpha_{1,p}$ such that

\[(i)\quad u_p(r) \to A_1 G(r, \alpha_{1,p}) = G(r, \alpha_{1,p}) G(\alpha_{1,p}, \alpha_{1,p}) .\]

So $A_1 = \frac{1}{G(\alpha_{1,p}, \alpha_{1,p})}$,

\[(ii)\quad \alpha_{1,p} \to \alpha_{1} \text{ as } p \to \infty \]

and α_{1} is a critical point of the function $\varphi(\alpha_{1}) = \inf \{\| u \|^2_{H^1_{\text{rad}}(B_1)} : u(\alpha_{1}) = 1\}$, \hspace{1cm} in the set $0 < \alpha_{1} < 1$. Moreover we have that $\varphi(\alpha_{1}) = A_1 \frac{1}{1} = A_1 \frac{1}{1} G(\alpha_{1}, \alpha_{1})$.
There exists \bar{p} such that for any $p > \bar{p}$ there exists a radial solution $u_p(r)$ having exactly 1 maximum point $\alpha_{1,p}$ such that

(i) $u_p(r) \rightarrow A_1 G(r, \alpha_1) = \frac{G(r, \alpha_1)}{G(\alpha_1, \alpha_1)}$. So

$$A_1 = \frac{1}{G(\alpha_1, \alpha_1)},$$
There exists \(\bar{p} \) such that for any \(p > \bar{p} \) there exists a radial solution \(u_p(r) \) having exactly 1 maximum point \(\alpha_{1,p} \) such that

(i) \(u_p(r) \to A_1 G(r, \alpha_1) = \frac{G(r, \alpha_1)}{G(\alpha_1, \alpha_1)} \). So

\[
A_1 = \frac{1}{G(\alpha_1, \alpha_1)},
\]

(ii) \(\alpha_{1,p} \to \alpha_1 \) as \(p \to \infty \) and \(\alpha_1 \) is a critical point of the function

\[
\varphi(\alpha_1) = \inf\{\|u\|_{H^1_{rad}(B_1)}^2 : u(\alpha_1) = 1\},
\]

in the set \(0 < \alpha_1 < 1 \).
The case of one peak

There exists \(\bar{p} \) such that for any \(p > \bar{p} \) there exists a radial solution \(u_p(r) \) having exactly 1 maximum point \(\alpha_{1,p} \) such that

(i) \(u_p(r) \rightarrow A_1 G(r, \alpha_1) = \frac{G(r, \alpha_1)}{G(\alpha_1, \alpha_1)} \). So

\[
A_1 = \frac{1}{G(\alpha_1, \alpha_1)},
\]

(ii) \(\alpha_{1,p} \rightarrow \alpha_1 \) as \(p \rightarrow \infty \) and \(\alpha_1 \) is a critical point of the function

\[
\varphi(\alpha_1) = \inf \{ \| u \|^2_{H^1_{rad}(B_1)} : u(\alpha_1) = 1 \},
\]

in the set \(0 < \alpha_1 < 1 \).

Moreover we have that

\[
\varphi(\alpha_1) = A_1 \alpha_1^{N-1} = \frac{\alpha_1^{N-1}}{G(\alpha_1, \alpha_1)}.
\]
The case of two peaks

There exists \bar{p} such that for any $p > \bar{p}$ there exists a radial solution $u_p(r)$ having exactly 2 maximum points α_1, p and α_2, p such that

(i) $u_p(r) \to A_1 G(r, \alpha_1) + A_2 G(r, \alpha_2)$ with

$A_1 = G(\alpha_2, \alpha_2) - G(\alpha_1, \alpha_2)$
$G(\alpha_1, \alpha_1) - G(\alpha_1, \alpha_2)$

$A_2 = G(\alpha_1, \alpha_1) - G(\alpha_2, \alpha_1)$
$G(\alpha_2, \alpha_2) - G(\alpha_2, \alpha_1)$.

(ii) $(\alpha_1, p, \alpha_2, p) \to (\alpha_1, \alpha_2)$ as $p \to \infty$ and (α_1, α_2) is a critical point of the function $\phi(\alpha_1, \alpha_2) = \inf \{\|u\|_{H^1_{rad}(B_1)} : u(\alpha_1) = u(\alpha_2) = 1\}$, in the set $0 < \alpha_1 < \alpha_2 < 1$.

Moreover we have that $\phi(\alpha_1, \alpha_2) = A_1 \alpha_1^{N-1} + A_2 \alpha_2^{N-1} = (G(\alpha_2, \alpha_2) - G(\alpha_1, \alpha_2)) \alpha_1^{N-1} G(\alpha_1, \alpha_1) - G(\alpha_1, \alpha_2) G(\alpha_2, \alpha_1) + (G(\alpha_1, \alpha_1) - G(\alpha_2, \alpha_1)) \alpha_2^{N-1} G(\alpha_1, \alpha_1) - G(\alpha_1, \alpha_2) G(\alpha_2, \alpha_1)$.

The case of two peaks

There exists \bar{p} such that for any $p > \bar{p}$ there exists a radial solution $u_p(r)$ having exactly 2 maximum points $\alpha_{1,p}$ and $\alpha_{2,p}$ such that

(i) $u_p(r) \rightarrow A_1 G(\alpha_{1,p}) + A_2 G(\alpha_{2,p})$ with

$$A_1 = G(\alpha_{2,p}) - G(\alpha_{1,p})$$
$$A_2 = G(\alpha_{1,p}) - G(\alpha_{2,p})$$

(ii) $(\alpha_{1,p}, \alpha_{2,p}) \rightarrow (\alpha_{1,\infty}, \alpha_{2,\infty})$ as $p \rightarrow \infty$ and $(\alpha_{1,\infty}, \alpha_{2,\infty})$ is a critical point of the function $\varphi(\alpha_{1,\infty}, \alpha_{2,\infty}) = \inf \{ \| u \|_{H^1_{rad}(B_1)} : u(\alpha_{1,\infty}) = u(\alpha_{2,\infty}) = 1 \}$,
in the set $0 < \alpha_{1,\infty} < \alpha_{2,\infty} < 1$.

Moreover we have that $\varphi(\alpha_{1,\infty}, \alpha_{2,\infty}) = A_1 \alpha_{N-1}^1 + A_2 \alpha_{N-1}^2 = (G(\alpha_{2,\infty}) - G(\alpha_{1,\infty})) \alpha_{N-1}^1 G(\alpha_{1,\infty}) G(\alpha_{2,\infty}) - G(\alpha_{1,\infty}) G(\alpha_{2,\infty})$.
The case of two peaks

There exists \(\overline{p} \) such that for any \(p > \overline{p} \) there exists a radial solution \(u_p(r) \) having exactly 2 maximum points \(\alpha_{1,p} \) and \(\alpha_{2,p} \) such that

(i) \(u_p(r) \to A_1 G(r, \alpha_1) + A_2 G(r, \alpha_2) \) with

\[
A_1 = \frac{G(\alpha_2, \alpha_2) - G(\alpha_1, \alpha_2)}{G(\alpha_1, \alpha_1) G(\alpha_2, \alpha_2) - G(\alpha_1, \alpha_2) G(\alpha_2, \alpha_1)},
\]

\[
A_2 = \frac{G(\alpha_1, \alpha_1) - G(\alpha_2, \alpha_1)}{G(\alpha_1, \alpha_1) G(\alpha_2, \alpha_2) - G(\alpha_1, \alpha_2) G(\alpha_2, \alpha_1)}.
\]
There exists \bar{p} such that for any $p > \bar{p}$ there exists a radial solution $u_p(r)$ having exactly 2 maximum points $\alpha_{1,p}$ and $\alpha_{2,p}$ such that

(i) $u_p(r) \to A_1 G(r, \alpha_1) + A_2 G(r, \alpha_2)$ with

\[
A_1 = \frac{G(\alpha_2, \alpha_2) - G(\alpha_1, \alpha_2)}{G(\alpha_1, \alpha_1)G(\alpha_2, \alpha_2) - G(\alpha_1, \alpha_2)G(\alpha_2, \alpha_1)},
\]

\[
A_2 = \frac{G(\alpha_1, \alpha_1) - G(\alpha_2, \alpha_1)}{G(\alpha_1, \alpha_1)G(\alpha_2, \alpha_2) - G(\alpha_1, \alpha_2)G(\alpha_2, \alpha_1)}.
\]

(ii) $(\alpha_{1,p}, \alpha_{2,p}) \to (\alpha_1, \alpha_2)$ as $p \to \infty$ and (α_1, α_2) is a critical point of the function

\[
\varphi(\alpha_1, \alpha_2) = \inf\{\|u\|_{H^1_{\text{rad}}(B_1)}^2 : u(\alpha_1) = u(\alpha_2) = 1\},
\]

in the set $0 < \alpha_1 < \alpha_2 < 1$.
The case of two peaks

There exists \(\bar{p} \) such that for any \(p > \bar{p} \) there exists a radial solution \(u_p(r) \) having exactly 2 maximum points \(\alpha_{1,p} \) and \(\alpha_{2,p} \) such that

(i) \(u_p(r) \rightarrow A_1 G(r, \alpha_1) + A_2 G(r, \alpha_2) \) with

\[
A_1 = \frac{G(\alpha_2, \alpha_2) - G(\alpha_1, \alpha_2)}{G(\alpha_1, \alpha_1) G(\alpha_2, \alpha_2) - G(\alpha_1, \alpha_2) G(\alpha_2, \alpha_1)},
\]

\[
A_2 = \frac{G(\alpha_1, \alpha_1) - G(\alpha_2, \alpha_1)}{G(\alpha_1, \alpha_1) G(\alpha_2, \alpha_2) - G(\alpha_1, \alpha_2) G(\alpha_2, \alpha_1)}.
\]

(ii) \((\alpha_{1,p}, \alpha_{2,p}) \rightarrow (\alpha_1, \alpha_2)\) as \(p \rightarrow \infty \) and \((\alpha_1, \alpha_2)\) is a critical point of the function

\[
\varphi(\alpha_1, \alpha_2) = \inf\{\|u\|_{H^{1}_{rad}(B_1)}^2 : u(\alpha_1) = u(\alpha_2) = 1\},
\]

in the set \(0 < \alpha_1 < \alpha_2 < 1 \).

Moreover we have that \(\varphi(\alpha_1, \alpha_2) = A_1 \alpha_1^{N-1} + A_2 \alpha_2^{N-1} = \)

\[
\frac{(G(\alpha_2, \alpha_2) - G(\alpha_1, \alpha_2)) \alpha_1^{N-1}}{G(\alpha_1, \alpha_1) G(\alpha_2, \alpha_2) - G(\alpha_1, \alpha_2) G(\alpha_2, \alpha_1)} + \frac{(G(\alpha_1, \alpha_1) - G(\alpha_2, \alpha_1)) \alpha_2^{N-1}}{G(\alpha_1, \alpha_1) G(\alpha_2, \alpha_2) - G(\alpha_1, \alpha_2) G(\alpha_2, \alpha_1)}.
\]
Here there is the graph of the solution,
Sketch of the proof

Construction of the 1-peak solution “gluing” an increasing solution in $(0, \alpha)$ and a decreasing solution in $(\alpha, 1)$.

Construction of the 2-peak solution “gluing” the 1-peak solutions in $(0, \alpha)$ and $(\alpha, 1)$ respectively.

The general case follows by a degree argument.
Construction of the 1-peak solution “gluing” an increasing solution in $(0, \alpha)$ and a decreasing solution in $(\alpha, 1)$.
Construction of the 1-peak solution “gluing” an increasing solution in \((0, \alpha)\) and a decreasing solution in \((\alpha, 1)\).

Construction of the 2-peak solution “gluing” the 1-peak solutions in \((0, \alpha)\) and \((\alpha, 1)\) respectively.
Construction of the 1-peak solution “gluing” an increasing solution in \((0, \alpha)\) and a decreasing solution in \((\alpha, 1)\).

Construction of the 2-peak solution “gluing” the 1-peak solutions in \((0, \alpha)\) and \((\alpha, 1)\) respectively.

The general case follows by a degree argument.
Comparison with perturbative methods

Question

Is it possible to get the same result using the Lyapounov-Schmidt reduction? Namely,

\[u_p(r) = \sum_{i=1}^{k} PU_{\lambda_p,\alpha_p}(r) + \phi_p(r) \]

where \(PU_{\lambda,\alpha} \) is the projection of a function \(U_{\lambda,\alpha} \) solving some limit problem and \(\phi_p \to 0 \) as \(p \to +\infty \)?

The answer (very likely) is YES, but if needs many computations! In our opinion this approach is simpler.