LARGE CONFORMAL METRICS WITH PRESCRIBED SIGN-CHANGING GAUSS CURVATURE

CARLOS ROMÁN
UNIVERSITÉ PIERRE ET MARIE CURIE

Joint work with Manuel del Pino

Workshop in Nonlinear PDEs, ULB

September 7, 2015
The prescribed Gauss curvature problem

Let \((M, g)\) be a two-dimensional compact Riemannian manifold.

Problem: Given a real-valued, sufficiently smooth function \(\kappa(x)\) defined on \(M\), we want to know if \(\kappa\) can be realized as the Gaussian curvature \(K_{g_1}\) of \(M\) for a metric \(g_1\), which is in addition conformal to \(g\), namely \(g_1 = e^u g\) for some scalar function \(u\) on \(M\).

By the uniformization theorem, without loss of generality we may assume that \(M\) has constant Gaussian curvature for \(g\),

\[K_g =: -\alpha. \]

The relation \(K_{g_1} = \kappa\) is equivalent to the following nonlinear partial differential equation

\[\Delta_g u + \kappa e^u + \alpha = 0, \quad \text{on } M. \]
Integrating (1), assuming that M has surface area equal to one, and using the Gauss-Bonet formula we obtain

\[\int_M \kappa e^u d\mu_g = \int_M K_g d\mu_g = -\alpha = 2\pi \chi(M), \]

where $\chi(M) = 2(1 - g(M))$ is the Euler characteristic of the manifold M.

Assumption: $g(M) > 1$.

Thus: $\chi(M) < 0$, $\alpha > 0$.

Necessary condition for existence: $\kappa(x)$ has to be negative somewhere on M. Moreover, we must have $\int_M \kappa d\mu_g < 0$. Indeed testing (1) against e^{-u} we get

\[\int_M \kappa d\mu_g = -\int_M (|\nabla_g u|^2 + \alpha) e^{-u} d\mu_g < 0. \]
Solutions u to (1) correspond to critical points in the Sobolev space $H^1(M, g)$ of the energy functional

$$E_\kappa(u) = \frac{1}{2} \int_M |\nabla_g u|^2 d\mu_g - \alpha \int_M u d\mu_g - \int_M \kappa e^u d\mu_g.$$

Since $\alpha > 0$, if $0 \not\equiv \kappa \leq 0$, then this functional is strictly convex and coercive in $H^1(M, g)$. It thus has a unique critical point u_κ which is a global minimizer of E_κ.

Question: What happens when κ changes sign? If $\sup_M \kappa > 0$, then E_κ is no longer bounded below, hence a global minimizer cannot exist.

When $0 \not\equiv \kappa \leq 0$, there exists $C_0 > 0$ such that

$$\|h\|_1^2 \leq C_0 d^2 E_\kappa(u_\kappa)(h, h), \quad \text{for all } h \in H^1(M, g).$$

By the implicit function theorem, this gives existence also for certain sign-changing prescribed Gauss curvature functions, which can be characterized as relative minimizers of the associated energy.
One result in this direction.

Let (M, g) such that $K_g < 0$, and let $\kappa \in C^\infty(M)$ with

$$K = \{ x \in M : 0 \leq \kappa(x) \} \not\subseteq M.$$

There exists a constant $C = C(K, M) > 0$ such that, if

$$\sup_M \kappa \leq C \sup_M (-\kappa),$$

then κ is the Gauss curvature of a metric conformal to g.

In what follows we focus in a special class of functions which change sign being nearly everywhere negative on M. Let f be a function of class $C^3(M)$ such that

$$f \geq 0, \quad f \not\equiv 0, \quad \min_M f = 0.$$

For $\lambda > 0$, we let

$$\kappa_\lambda(x) = -f(x) + \lambda^2,$$

so that (1) now reads

(5) $$\Delta_g u - fe^u + \lambda^2 e^u + \alpha = 0, \quad \text{on } M.$$
Ding and Liu (Trans. Amer. Math. Soc., 1995) proved that there exists $\lambda_0 > 0$ such that the **global minimizer** of E_{κ_0} persist as a **local minimizer** u_λ of E_{κ_λ}, for any $0 < \lambda < \lambda_0$. From (3) we see that

$$\lambda_0 < \left(\int_M f \right)^{1/2}.$$

Moreover, they established the existence of a **second non-minimizing** solution u_λ in this range. Besides, $u_\lambda \to u_0$, as $\lambda \to 0$, while u_λ becomes **unbounded**.

Figure: Bifurcation diagram for solutions of Problem (5)
A recent result.

The proof of Ding and Liu does not provide any information on the **asymptotic blowing-up behavior** or about the **number** of such “large” solutions. Borer, Galimberti and Struwe (Comm. Math. Helv., 2014) provided a new construction of the “mountain pass solution” for small λ, which allowed them to identify further properties of u_λ under the following generic assumption: **points of global minima of f are non-degenerate. This means that if $f(p) = 0$ then $D^2 f(p)$ is positive definite.**

Their result can be described as follows: along any sequence $\lambda = \lambda_k \to 0$, there exist points p^k_1, \ldots, p^k_n, $1 \leq n \leq 4$, converging to p_1, \ldots, p_n points of global minima of f such that one of the following holds:
(i) There exist \(\varepsilon_1, \ldots, \varepsilon_n \), such that \(\varepsilon_i / \lambda \to 0 \), \(i = 1, \ldots, k \), and in local conformal coordinates around \(p_i \) there holds

\[
(6) \quad u_\lambda (\varepsilon_i \lambda x) - u_\lambda (0) + \log 8 \to w(x) := \log \frac{8}{(1 + |x|^2)^2},
\]

smoothly locally in \(\mathbb{R}^2 \). We note that

\[
\Delta w + e^w = 0, \quad \text{in} \ \mathbb{R}^2.
\]

(ii) In local conformal coordinates around \(p_i \), with a constant \(c_i \) there holds

\[
u_n (\lambda x) + 4 \log(\lambda) + c_i \to w_\infty (x),
\]

smoothly locally in \(\mathbb{R}^2 \), where \(w_\infty \) satisfies

\[
\Delta w_\infty + [1 - (Ax, x)] e^{w_\infty} = 0, \quad \text{in} \ \mathbb{R}^2,
\]

where \(A = \frac{1}{2} D^2 f(p_i) \).
In order to state our main result, we consider the singular problem

(7) \[\Delta_g G - f e^G + 8\pi \sum_{i=1}^{n} \delta_{p_i} + \alpha = 0, \quad \text{on } M, \]

where \(\delta_{p_i} \) designates the Dirac mass at the point \(p_i \). We have the following result.

Lemma 1

Problem 7 has a unique solution \(G \) which is smooth away from the singularities and in local conformal coordinates around \(p_i \) it has the form

(8) \[G(x) = -4 \log |x| - 2 \log \left(\frac{1}{\sqrt{2}} \log \frac{1}{|x|} \right) + \mathcal{H}(x), \]

where \(\mathcal{H}(x) \in C(M) \).
Main result

Theorem 2 (del Pino, Roman, Calc. Var. PDE 2015)

Let p_1, \ldots, p_n be points such that $f(p_i) = 0$ and $D^2 f(p_i)$ is positive definite for each i. Then, there exists a family of solutions u_λ to (5) with

$$\lambda^2 e^{u_\lambda} \rightarrow 8\pi \sum_{i=1}^{n} \delta_{p_i}, \quad \text{as } \lambda \rightarrow 0,$$

and $u_\lambda \rightarrow G$ uniformly in compacts subsets of $M \setminus \{p_1, \ldots, p_k\}$. We define

$$c_i = \frac{1}{2} e^{H(p_i)/2}, \quad \delta^i_\lambda = \frac{c_i}{|\log \lambda|}, \quad \varepsilon^i_\lambda = \lambda \delta^i_\lambda,$$

where H is defined near p_i by relation (8). In local conformal coordinates around p_i, there holds

$$u_\lambda(\varepsilon^i_\lambda x) + 4 \log \lambda + 2 \log \delta^i_\lambda \rightarrow \log \frac{8}{(1 + |x|^2)^2},$$

uniformly on compact sets of \mathbb{R}^2 as $\lambda \rightarrow 0$.
In particular if f has exactly m non-degenerate global minimum points, then $2^m - 1$ distinct large solutions exist for all sufficiently small λ.

The key ingredient of the proof of Lemma 1 is the function

$$V(|x|) = -4 \log |x| - 2 \log \left(\frac{1}{\sqrt{2}} \log \frac{1}{|x|} \right),$$

which solves

$$\Delta V - |x|^2 e^V + 8\pi \delta_0 = 0.$$

This equation is important due to the fact that p_1, \ldots, p_n are non-degenerate points of global minima of f.

The proof of our main result consists of the construction of a suitable first approximation of a solution as required, and then solving by linearization and a suitable Lyapunov-type reduction.
The “basic cells” for the construction of the first approximation are the radially symmetric solutions of the problem

\[
\begin{aligned}
\left\{ \begin{array}{l}
\Delta w + \lambda^2 e^w = 0 \quad \text{in } \mathbb{R}^2, \\
w(x) \to 0 \quad \text{as } |x| \to \infty.
\end{array} \right.
\end{aligned}
\]

which are given by the one-parameter family of functions

\[
w_\delta(|x|) = \log \frac{8\delta^2}{(\lambda^2 \delta^2 + |x|^2)^2},
\]

where \(\delta \) is any positive number. We define \(\varepsilon = \lambda \delta \).

To make the construction precise enough, we dealt with the equation

\[
(9) \quad \Delta F - \frac{\delta^2}{r^2} e^F = 0
\]

in the variable \(r = |x|/\varepsilon \) and we look for a radial solution \(F = F(r) \), away from \(r = 0 \). We solve (9) under the following conditions

\[
F(1/\delta) = 0, \quad F'(1/\delta) = 0.
\]
This problem has a unique regular solution, which blows-up at distance $O(1/\lambda)$ from the origin. We conclude that the solution $F(r)$ is defined for all $1/\delta \leq r \leq Ce^{1/\delta} = C/\lambda$, for some constant C. Besides, we extend by 0 the function F for $r \in [0, 1/\delta)$.

In order to build a global approximation, we consider a smooth radial cut-off function η such that $\eta(r) = 1$ if $r \leq C_1 \delta$ and $\eta(r) = 0$ if $r \geq C_2 \delta$, for constants $0 < C_1 < C_2$. We consider as initial approximation

$$U_\varepsilon = \eta u_\varepsilon + (1 - \eta)G,$$

where G is the Green’s function,

$$u_\varepsilon(x) = \log \frac{8\delta^2}{(\varepsilon^2 + |x - k|^2)^2} + F,$$

and $k \in \mathbb{R}^2$ is a parameter related to translations.

Choice of δ:

$$\log 8\delta^2 = -2 \log \left(\frac{1}{\sqrt{2}} \log \frac{1}{\lambda} \right) + \mathcal{H}(p).$$