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Introduction

Chemotaxis

Chemotaxis describes the oriented movement of cells which
respond to a chemical signal

and is important in e.g.
@ movement of bacteria,
@ spreading of tumor cells,
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Introduction

Feedback

There are several types of chemotaxis.

Here we assume:
@ cells are attracted by the chemical signal,
@ cells produce the substance themselves.

Examples:
@ aggregation of the slime mold Dictyostelium discoideum,
@ aggregation of the bacteria Escherichia coli.
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Introduction

The Keller-Segel model [Keller-Segel 1970]

ur = V- (p(u)Vu) = V- (x(w)uVv), x€Q, t>0,

v = Av — v+ u, reN, t>0,
%:%:, xed, t>0,

u(x,0) =up(z), v(x,0)=uve(z), x € .
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Introduction

The Keller-Segel model [Keller-Segel 1970]

ur = V- (p(u)Vu) = V- (x(w)uVv), x€Q, t>0,

v = Av — v+ u, reN, t>0,
%:%:, xed, t>0,

u(x,0) =up(z), v(x,0)=uve(z), x € .

Here
@ u(x,t) denotes the density of the cells,
@ v(z,t) is the concentration of the chemical signal,
@ O C R" is a bounded domain.
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Introduction

Aggregation and blowup

@ These Keller-Segel models can describe the spontaneous
formation of aggregation.
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Aggregation and blowup

@ These Keller-Segel models can describe the spontaneous
formation of aggregation.

@ Aggregation particularly takes place if blowup is observed
(limsupy sp [lu(+,t)|| = (@) = oo for some T' > 0 or for
T = c0).
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Introduction

Aggregation and blowup

@ These Keller-Segel models can describe the spontaneous
formation of aggregation.

@ Aggregation particularly takes place if blowup is observed

(limsupy sp [lu(+,t)|| = (@) = oo for some T' > 0 or for
T = c0).

@ Next we summarize blowup results for some variants of the
model (1)
(see also

[Horstmann 2003],
[Hillen-Painter 2009],

[Bellomo, Bellouquid, Tao, Winkler 2015] ).
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Introduction

The minimal parabolic-parabolic model

{ ug = Au— V- (uVv),

vy = Av — v+ u.

@ n = 1: All solutions global and bounded
([Osaki-Yagi 2001]),
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Introduction

The minimal parabolic-parabolic model

uy = Au — V- (uVv),
vy = Av — v+ u.

@ n = 1: All solutions global and bounded
([Osaki-Yagi 2001]),

@ n = 2: Critical mass m = 4 in the general and m = 8« in
the radial case  ([Nagai-Senba-Yoshida 1997],
[Gajewski-Zacharias 1998], [Horstmann-Wang 2001]);
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The minimal parabolic-parabolic model

{ ug = Au— V- (uVv),

vy = Av — v+ u.

@ n = 1: All solutions global and bounded
([Osaki-Yagi 2001]),

@ n = 2: Critical mass m = 4 in the general and m = 8« in
the radial case  ([Nagai-Senba-Yoshida 1997],
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Blowup in finite time for specific and general radial initial
data  ([Herrero-Velazquez 1997], [Mizoguchi-Winkler]),
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Introduction

The minimal parabolic-parabolic model

{ ug = Au— V- (uVv),

vy = Av — v+ u.

@ n = 1: All solutions global and bounded
([Osaki-Yagi 2001]),

@ n = 2: Critical mass m = 4 in the general and m = 8« in
the radial case  ([Nagai-Senba-Yoshida 1997],
[Gajewski-Zacharias 1998], [Horstmann-Wang 2001]);

Blowup in finite time for specific and general radial initial
data  ([Herrero-Velazquez 1997], [Mizoguchi-Winkler]),

@ n > 3: Blowup in finite time for any mass m > 0
([Winkler 2013]).
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Introduction

A quasilinear model

u =V - ((u+1)"PVu) = V- (u(u+1)7"Vo),
vy = Av — v+ u.

for ¢ < 1 itis related to the model with volume-filling effect from
[Painter-Hillen 2002].
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for ¢ < 1 itis related to the model with volume-filling effect from
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@ p+g< %: all solutions global and bounded ([Tao-Winkler
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Introduction

A quasilinear model

{ up =V ((u+1)7"Vu) = V- (u(u+ 1)1 Vo),

vy = Av — v+ u.

for ¢ < 1 itis related to the model with volume-filling effect from
[Painter-Hillen 2002].

@ p+g< %: all solutions global and bounded ([Tao-Winkler
2012], [Ishida-Seki-Yokota 2014]),

® p+q > 2, n>2:there exist unbounded solutions, it is

unknown if the blowup takes place in finite or infinite time
([Winkler 2010]),
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Introduction

A quasilinear model

u =V ((ut1)"PVu) = V- (u(u+ 1) Vo),
vy = Av — v+ u.
for ¢ < 1 itis related to the model with volume-filling effect from
[Painter-Hillen 2002].
@ pt+g< %: all solutions global and bounded ([Tao-Winkler
2012], [Ishida-Seki-Yokota 2014]),

® p+q > 2, n>2:there exist unbounded solutions, it is
unknown if the blowup takes place in finite or infinite time
([Winkler 2010]),

@ p+q> % n =1 and g = 1: there exists blowup in finite
time for m large enough ([Cieslak-Laurengot 2010]).
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Current results

The system studied here

u =V - (p(uw)Vu) = V- ((u)Vv), z€Q,te (0,Tmna),

vy = Av — v+ u, x€Q, te(0,Tha),

gu = gv =, z €0, t € (0, Thnaz),
u(l‘,O) = u0($)7 ’U(CB,O) = Uo(l‘), z €.

()
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Current results

The system studied here

u =V - (p(uw)Vu) = V- ((u)Vv), z€Q,te (0,Tmna),

vy = Av — v+ u, x€Q, te(0,Tha),
8u_ ov _0

v — ov T € 89, te (O,Tmax),
u(l‘,O) = u0($)7 U($,O) = Uo(ZL‘), z €.
2)

Assumptions
@ Q= Br(0) C R™is aballwithn >2and R > 0,

@ ug € C°(), vy € WH>(Q) are radially symmetric with
up, Vg > 0e Q,

@ Y(s) = cis(s+1)771, ¢(s) = ca(s +1)7P for s > 0.
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Current results

Liapunov functional

=5 95 [ [t [ G

is a Liapunov functional for (2) with

= [ [

S0 So
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Current results

Liapunov functional

/WW /U—/m+/

is a Liapunov functional for (2) with

= [ [

S0 S0

More precisely,

d
STl 0),0(,)) = ~D(

u(-t),v(+t), te€(0,Thma), (3)
P(u) 2
Vvl .
-i-/g’\/m V(u) v‘

where D(u,v) ::/v2
Q



Current results

Blowup in finite time

Theorem 1 (Cieslak-S. JDE 2012, AAM 2014)

Let)(s) = c1s(s +1)77 1 and ¢(s) = ca(s +1)7P, s > 0, with
q>1L,p+q> %,ananQ.

Givenm > 0 and A > 0, there exist T'(m, A) > 0 and K(m) > 0
such that the solution (u,v) of (2) blows up at the finite time
Trnaz < T(m, A), if

/Quo =m, ||lvollwrz@) <A, Fluo,vo) <—K(m)-(1+ A?)

are fulfilled. Moreover, for any m > 0 there exists A > 0 such
that all conditions raised above are satisfied for suitable (u, vo).
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Blowup in finite time

Theorem 1 (Cieslak-S. JDE 2012, AAM 2014)

Let)(s) = c1s(s +1)77 1 and ¢(s) = ca(s +1)7P, s > 0, with
q>1L,p+q> %,ananQ.

Givenm > 0 and A > 0, there exist T'(m, A) > 0 and K(m) > 0
such that the solution (u,v) of (2) blows up at the finite time
Trnaz < T(m, A), if

/ Uy = m, ”U0||W1,2(Q) <A, F(ug,vg) < —K(m)-(1+ A2)
Q
are fulfilled. Moreover, for any m > 0 there exists A > 0 such

that all conditions raised above are satisfied for suitable (u, vo).

Remark: The theorem is also valid without the assumption
q > 1, if we assume instead p < 0 (see [Cieslak-S. JDE 2015]).
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Current results

Condition on v

The condition p + ¢ > % is optimal with respect to existence of
blowup (see [Tao-Winkler 2012]).
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Condition on v

The condition p + ¢ > % is optimal with respect to existence of
blowup (see [Tao-Winkler 2012]).

Is the condition ¢ > 1 or ¢ > 2, with 1(s) = ¢1s(s + 1)771, really
necessary for blowup in finite time?
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Current results

Condition on v

The condition p + ¢ > % is optimal with respect to existence of
blowup (see [Tao-Winkler 2012]).

Is the condition ¢ > 1 or ¢ > 2, with 1(s) = ¢1s(s + 1)771, really
necessary for blowup in finite time?

@ We expect that this condition is still not optimal, but
@ a condition on the growth of ¢ is in fact necessary
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Current results

Condition on v

The condition p + ¢ > % is optimal with respect to existence of
blowup (see [Tao-Winkler 2012]).

Is the condition ¢ > 1 or ¢ > 2, with 1(s) = ¢1s(s + 1)771, really
necessary for blowup in finite time?

@ We expect that this condition is still not optimal, but

@ a condition on the growth of ¢ is in fact necessary
because we observe blowup in infinite time.
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Current results

Blowup in infinite time

Theorem 2 (Cieslak-S. JDE 2015)

Assume that(s) = c1s(s + 1)1 and ¢(s) = ca2(s +1)7P, s > 0,
withq <0, 2 — g <p < 2 —2q, andn > 2. Then all solutions to
(2) exist globally for all t > 0.

Moreover, for any m > 0 there exists C(m) > 0 such that the
solution (u,v) of (2) satisfies lim sup;_, . ||u(t)|| () = oo, if

/uo =m and F(up,v9) < —C(m) hold.
Q
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Ideas of the proof

Blowup in finite time: Step 1

Here we only consider the case n > 3.
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Ideas of the proof

Blowup in finite time: Step 1

Here we only consider the case n > 3.
Let fQ UO d:L’ =m and ||’L)0||W1 2(Q) < A

Then we deduce for all t € (0, Thnaz)
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Ideas of the proof

Blowup in finite time: Step 1

Here we only consider the case n > 3.
Let fQ UO d:L’ =m and ||’L)0||W1 2(Q) < A

Then we deduce for all t € (0, Thnaz)
o [u(x,t)de=m
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Ideas of the proof

Blowup in finite time: Step 1

Here we only consider the case n > 3.
Let fQ UO d:L’ =m and ||’L)0||W1 2(Q) < A

Then we deduce for all t € (0, Thnaz)
o [,u(x,t)dr =
o [u(z,t)dr <ci,
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Ideas of the proof

Blowup in finite time: Step 1

Here we only consider the case n > 3.
Let fQ uo d:L’ =m and ||’L)0||W1 2(Q) < A

Then we deduce for all t € (0, Thnaz)
o [u(x,t)de=m
o [u(z,t)dr <ci,
@ v(xz,t) < cq|x|™F
where k >n —2and c¢; = Ci(m) - (1+ A) > 0.
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Ideas of the proof

Step 2: the core

There exist co = Co(m) - (1 + A?) > 0and 6 € (3,1) such that

/uv < 1/|Vv\2+/G(u)+02<1+

Q 2 Jo Q
26
L2(Q)>

o) Vu — u) Vv
o) Vi (u)

is fulfilled for all ¢ € (0, Thnaz)-

20
[oell 2 (0) +

Christian Stinner Blowup in a Keller-Segel system



Ideas of the proof

More general setting

Given f,g € C(Q),

there is C' = C(m, c1, k) such that any positive and radial
(u,v) € CHQ) x C?(Q) with

F=00n0Q, [pudr=m, [vds <ci,v(z) < elz|™,

—Av V—u= ¢(UJ) u — u v i:
Av+ g (ww)v VI >V> =9

satisfy

1
/ w < / Vol + / G(u)+0<1+||f|| )+|rg|rm>
Q Q Q
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Ideas of the proof

Step 3: estimate for the Liapunov functional (part 1)

There is c3 = C3(m) - (1 + A?) > 0 such that we have for
t € (0, Traz):

/uv < 1/Vv]2+/G(u)+03
Q 2 Jo Q

( oell 20 + ﬁ%vﬂ — V() Vv

1+

2 0
L2(Q) ) ]
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Ideas of the proof

Step 3: estimate for the Liapunov functional (part 1)

There is c3 = C3(m) - (1 + A?) > 0 such that we have for
t € (0, Traz):

/uv < 1/Vv]2+/G(u)+03
Q 2 Jo Q

2 0
vl o) Vu — u)Vv ) ]
(” tlz2 o) + NCIO) Vi (u) o

= 5 [P+ [ G e (1400w ).,

1+
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Ideas of the proof

Step 3: estimate for the Liapunov functional (part 2)

We deduce for t € (0, Tjnaz)

Fluv) = ;/Q]VU|2+;/QU2—/QUU+/QG(U)
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Ideas of the proof

Step 3: estimate for the Liapunov functional (part 2)

We deduce for t € (0, Tjnaz)

Fluv) = ;/yw? /v —/uv+/G

> —63<1+D( )
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Ideas of the proof

Step 3: estimate for the Liapunov functional (part 2)

We deduce for t € (0, Tjnaz)

Fluv) = ;/yw? /v —/uv+/G

> —63<1+D( )

This implies
—.F(u,v)

D (u,v) >
C3

— 1.
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Ideas of the proof

Step 4: blowup of the Liapunov functional

If we additionally assume F(ug, vo) < —2c3 = —2C5(m)(1+ A?),
then we obtain for ¢ € (0, Taz)

d
%(_‘F(u("t)’v(ﬁt))) - D(u('vt)7v('7t))
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Ideas of the proof

Step 4: blowup of the Liapunov functional

If we additionally assume F(ug, vo) < —2c3 = —2C5(m)(1+ A?),
then we obtain for ¢ € (0, Taz)

d
%(_‘F(u("t)’v(ﬁt))) - D(u('vt)7v('7t))

[V
N
I
e
=
=
“@
~—~
“@#
S~—
S~—
|
—_
~_
S
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Ideas of the proof

Step 4: blowup of the Liapunov functional

If we additionally assume F(ug, vo) < —2c3 = —2C5(m)(1+ A?),
then we obtain for ¢ € (0, Taz)

%(_‘F(u("t)’v('7t))) - D(u('vt)7v('7t))
—Flu(,8),0(,8) [\
> ()
_]:(u('vt)vv( at)) ¢
Z < 263 >
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Ideas of the proof

Step 4: blowup of the Liapunov functional

If we additionally assume F(ug, vo) < —2c3 = —2C5(m)(1+ A?),
then we obtain for ¢ € (0, Taz)

d
%(_‘F(u("t)’v(ﬁt))) - D(u('vt)7v('7t))

(—f(u(»t),vc,t)) ) 1>5

> L
> <_}—(U(;2,v(-,t))>é'

Hence, —F(u(-,t),v(-,t)) = oo for t — T4, With some
Trnaz < 00.
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Ideas of the proof

Blowup in infinite time: estimate

We multiply the first equation of (2) by «~! and differentiate the
second one.
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Ideas of the proof

Blowup in infinite time: estimate

We multiply the first equation of (2) by «~! and differentiate the
second one.
We conclude that for any v > ~; there is a > 1 such that

i(/(u—kl 7dw+/ |Vv|2°‘dx> <C(/Q(u+1)7da:+1>

for t € (0, Tnaz), if p+2¢ < 2
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Ideas of the proof

Blowup in infinite time: estimate

We multiply the first equation of (2) by «~! and differentiate the
second one.
We conclude that for any v > ~; there is a > 1 such that

i(/(u—kl 7dw+/ |Vv|2°‘dx> <C(/Q(u+1)7da:+1>

for t € (0, Tinaz), if p+2¢ < 2
Hence, for any v € [1, 00) we have

”u('vt)HLW(Q) < C(T)7 te (OvT)

for all finite T € (0, Tynax]-
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Ideas of the proof

Blowup in infinite time: end of the proof

As v € [1,00) was arbitrary, we deduce from the second
equation of (2)

V(- t)[[ Lo (@) < C(T), t€ (0,7)
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Ideas of the proof

Blowup in infinite time: end of the proof

As v € [1,00) was arbitrary, we deduce from the second
equation of (2)

V(- t)[[ Lo (@) < C(T), t€ (0,7)
and may apply [Tao-Winkler 2012] to deduce that
[u( )l Lo @) < C(T), te(0,T).

Hence, (u,v) exists globally for all ¢ > 0, if p+2¢ < 2.

Christian Stinner Blowup in a Keller-Segel system



Ideas of the proof

Blowup in infinite time: end of the proof

As v € [1,00) was arbitrary, we deduce from the second
equation of (2)

VU, t)|| o) < C(T), t€(0,7T)
and may apply [Tao-Winkler 2012] to deduce that

[u(- )| oo (@) < C(T), te(0,7).
Hence, (u,v) exists globally for all ¢ > 0, if p+2¢ < 2.
In view of [Winkler 2010], (u, v) has to be unbounded if

F(ug,v9) < —C(m) is satisfied and p +q > 2.
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Ideas of the proof

Open problem

@ Is there an optimal border between blowup in finite and
infinite time?
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Ideas of the proof

Thank you for your kind attention!
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