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Chemotaxis

Chemotaxis describes the oriented movement of cells which
respond to a chemical signal

and is important in e.g.
movement of bacteria,
spreading of tumor cells,
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Feedback

There are several types of chemotaxis.

Here we assume:
cells are attracted by the chemical signal,
cells produce the substance themselves.

Examples:
aggregation of the slime mold Dictyostelium discoideum,
aggregation of the bacteria Escherichia coli.
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The Keller-Segel model [Keller-Segel 1970]



ut = ∇ · (φ(u)∇u)−∇ · (χ(u)u∇v), x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,

∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω.

(1)

Here
u(x, t) denotes the density of the cells,
v(x, t) is the concentration of the chemical signal,
Ω ⊂ Rn is a bounded domain.
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Aggregation and blowup

These Keller-Segel models can describe the spontaneous
formation of aggregation.

Aggregation particularly takes place if blowup is observed
(lim supt↗T ‖u(·, t)‖L∞(Ω) =∞ for some T > 0 or for
T =∞).
Next we summarize blowup results for some variants of the
model (1)
(see also

[Horstmann 2003],

[Hillen-Painter 2009],

[Bellomo, Bellouquid, Tao, Winkler 2015] ).
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The minimal parabolic-parabolic model

{
ut = ∆u−∇ · (u∇v),

vt = ∆v − v + u.

n = 1: All solutions global and bounded
([Osaki-Yagi 2001]),

n = 2: Critical mass m = 4π in the general and m = 8π in
the radial case ([Nagai-Senba-Yoshida 1997],
[Gajewski-Zacharias 1998], [Horstmann-Wang 2001]);
Blowup in finite time for specific and general radial initial
data ([Herrero-Velázquez 1997], [Mizoguchi-Winkler]),
n ≥ 3: Blowup in finite time for any mass m > 0
([Winkler 2013]).
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A quasilinear model

{
ut = ∇ · ((u+ 1)−p∇u)−∇ · (u(u+ 1)q−1∇v),

vt = ∆v − v + u.

for q < 1 it is related to the model with volume-filling effect from
[Painter-Hillen 2002].

p+ q < 2
n : all solutions global and bounded ([Tao-Winkler

2012], [Ishida-Seki-Yokota 2014]),
p+ q > 2

n , n ≥ 2: there exist unbounded solutions, it is
unknown if the blowup takes place in finite or infinite time
([Winkler 2010]),
p+ q > 2

n , n = 1 and q = 1: there exists blowup in finite
time for m large enough ([Cieślak-Laurençot 2010]).
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The system studied here



ut = ∇ · (φ(u)∇u)−∇ · (ψ(u)∇v), x ∈ Ω, t ∈ (0, Tmax),

vt = ∆v − v + u, x ∈ Ω, t ∈ (0, Tmax),

∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t ∈ (0, Tmax),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω.
(2)

Assumptions
Ω = BR(0) ⊂ Rn is a ball with n ≥ 2 and R > 0,
u0 ∈ C0(Ω̄), v0 ∈W 1,∞(Ω) are radially symmetric with
u0, v0 > 0 ∈ Ω̄,
ψ(s) = c1s(s+ 1)q−1, φ(s) = c2(s+ 1)−p for s ≥ 0.
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Liapunov functional

F(u, v) :=
1

2

∫
Ω
|∇v|2 +

1

2

∫
Ω
v2 −

∫
Ω
uv +

∫
Ω
G(u)

is a Liapunov functional for (2) with

G(s) :=

s∫
s0

σ∫
s0

φ(τ)

ψ(τ)
dτ dσ.

More precisely,

d

dt
F(u(·, t), v(·, t)) = −D(u(·, t), v(·, t)), t ∈ (0, Tmax), (3)

where D(u, v) :=

∫
Ω
v2
t +

∫
Ω

∣∣∣ φ(u)√
ψ(u)

∇u−
√
ψ(u)∇v

∣∣∣2.
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Blowup in finite time

Theorem 1 (Cieślak-S. JDE 2012, AAM 2014)

Let ψ(s) = c1s(s+ 1)q−1 and φ(s) = c2(s+ 1)−p, s ≥ 0, with
q ≥ 1, p+ q > 2

n , and n ≥ 2.
Given m > 0 and A > 0, there exist T (m,A) > 0 and K(m) > 0
such that the solution (u, v) of (2) blows up at the finite time
Tmax ≤ T (m,A), if∫

Ω
u0 = m, ‖v0‖W 1,2(Ω) ≤ A, F(u0, v0) ≤ −K(m) · (1 +A2)

are fulfilled. Moreover, for any m > 0 there exists A > 0 such
that all conditions raised above are satisfied for suitable (u0, v0).

Remark: The theorem is also valid without the assumption
q ≥ 1, if we assume instead p ≤ 0 (see [Cieślak-S. JDE 2015]).
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Condition on ψ

The condition p+ q > 2
n is optimal with respect to existence of

blowup (see [Tao-Winkler 2012]).

Is the condition q ≥ 1 or q > 2
n , with ψ(s) = c1s(s+ 1)q−1, really

necessary for blowup in finite time?

We expect that this condition is still not optimal, but
a condition on the growth of ψ is in fact necessary
because we observe blowup in infinite time.
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Blowup in infinite time

Theorem 2 (Cieślak-S. JDE 2015)

Assume that ψ(s) = c1s(s+ 1)q−1 and φ(s) = c2(s+ 1)−p, s ≥ 0,
with q < 0, 2

n − q < p < 2
n − 2q, and n ≥ 2. Then all solutions to

(2) exist globally for all t ≥ 0.
Moreover, for any m > 0 there exists C(m) > 0 such that the
solution (u, v) of (2) satisfies lim supt→∞ ‖u(t)‖L∞(Ω) =∞, if∫

Ω
u0 = m and F(u0, v0) ≤ −C(m) hold.
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Blowup in finite time: Step 1

Here we only consider the case n ≥ 3.

Let
∫

Ω u0(x) dx = m and ‖v0‖W 1,2(Ω) ≤ A.

Then we deduce for all t ∈ (0, Tmax)∫
Ω u(x, t) dx = m,∫
Ω v(x, t) dx ≤ c1,
v(x, t) ≤ c1|x|−κ

where κ > n− 2 and c1 = C1(m) · (1 +A) > 0.
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Step 2: the core

There exist c2 = C2(m) · (1 +A2) > 0 and θ ∈ (1
2 , 1) such that∫

Ω
uv ≤ 1

2

∫
Ω
|∇v|2 +

∫
Ω
G(u) + c2

(
1 +

‖vt‖2θL2(Ω) +

∥∥∥∥∥ φ(u)√
ψ(u)

∇u−
√
ψ(u)∇v

∥∥∥∥∥
2θ

L2(Ω)

)
.

is fulfilled for all t ∈ (0, Tmax).
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More general setting

Given f, g ∈ C(Ω̄),

there is C = C(m, c1, κ) such that any positive and radial
(u, v) ∈ C1(Ω̄)× C2(Ω̄) with

∂v
∂ν = 0 on ∂Ω,

∫
Ω u dx = m,

∫
Ω v dx ≤ c1, v(x) ≤ c1|x|−κ,

−∆v + v − u = f,

(
φ(u)√
ψ(u)

∇u−
√
ψ(u)∇v

)
· x
|x|

= g

satisfy∫
Ω
uv ≤ 1

2

∫
Ω
|∇v|2 +

∫
Ω
G(u) + C

(
1 + ‖f‖2θL2(Ω) + ‖g‖2θL2(Ω)

)
.
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Step 3: estimate for the Liapunov functional (part 1)

There is c3 = C3(m) · (1 +A2) > 0 such that we have for
t ∈ (0, Tmax):∫

Ω
uv ≤ 1

2

∫
Ω
|∇v|2 +

∫
Ω
G(u) + c3

[
1 +

(
‖vt‖2L2(Ω) +

∥∥∥∥∥ φ(u)√
ψ(u)

∇u−
√
ψ(u)∇v

∥∥∥∥∥
2

L2(Ω)

)θ]

=
1

2

∫
Ω
|∇v|2 +

∫
Ω
G(u) + c3

(
1 +Dθ(u, v)

)
.
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Step 3: estimate for the Liapunov functional (part 2)

We deduce for t ∈ (0, Tmax)

F(u, v) =
1

2

∫
Ω
|∇v|2 +

1

2

∫
Ω
v2 −

∫
Ω
uv +

∫
Ω
G(u)

≥ −c3

(
1 +Dθ(u, v)

)
.

This implies

Dθ(u, v) ≥ −F(u, v)

c3
− 1.
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Step 4: blowup of the Liapunov functional

If we additionally assume F(u0, v0) ≤ −2c3 = −2C3(m)(1 +A2),
then we obtain for t ∈ (0, Tmax)

d

dt
(−F(u(·, t), v(·, t))) = D(u(·, t), v(·, t))

≥
(
−F(u(·, t), v(·, t))

c3
− 1

) 1
θ

≥
(
−F(u(·, t), v(·, t))

2c3

) 1
θ

.

Hence, −F(u(·, t), v(·, t))→∞ for t→ Tmax with some
Tmax <∞.
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Blowup in infinite time: estimate

We multiply the first equation of (2) by uγ−1 and differentiate the
second one.

We conclude that for any γ > γ1 there is α > 1 such that

d

dt

(∫
Ω

(u+ 1)γdx+

∫
Ω
|∇v|2αdx

)
≤ C

(∫
Ω

(u+ 1)γdx+ 1

)
for t ∈ (0, Tmax), if p+ 2q < 2

n .
Hence, for any γ ∈ [1,∞) we have

‖u(·, t)‖Lγ(Ω) ≤ C(T ), t ∈ (0, T )

for all finite T ∈ (0, Tmax].

Christian Stinner Blowup in a Keller-Segel system



Introduction
Current results

Ideas of the proof

Blowup in infinite time: estimate

We multiply the first equation of (2) by uγ−1 and differentiate the
second one.
We conclude that for any γ > γ1 there is α > 1 such that

d

dt

(∫
Ω

(u+ 1)γdx+

∫
Ω
|∇v|2αdx

)
≤ C

(∫
Ω

(u+ 1)γdx+ 1

)
for t ∈ (0, Tmax), if p+ 2q < 2

n .

Hence, for any γ ∈ [1,∞) we have

‖u(·, t)‖Lγ(Ω) ≤ C(T ), t ∈ (0, T )

for all finite T ∈ (0, Tmax].

Christian Stinner Blowup in a Keller-Segel system



Introduction
Current results

Ideas of the proof

Blowup in infinite time: estimate

We multiply the first equation of (2) by uγ−1 and differentiate the
second one.
We conclude that for any γ > γ1 there is α > 1 such that

d

dt

(∫
Ω

(u+ 1)γdx+

∫
Ω
|∇v|2αdx

)
≤ C

(∫
Ω

(u+ 1)γdx+ 1

)
for t ∈ (0, Tmax), if p+ 2q < 2

n .
Hence, for any γ ∈ [1,∞) we have

‖u(·, t)‖Lγ(Ω) ≤ C(T ), t ∈ (0, T )

for all finite T ∈ (0, Tmax].

Christian Stinner Blowup in a Keller-Segel system



Introduction
Current results

Ideas of the proof

Blowup in infinite time: end of the proof

As γ ∈ [1,∞) was arbitrary, we deduce from the second
equation of (2)

‖∇v(·, t)‖L∞(Ω) ≤ C(T ), t ∈ (0, T )

and may apply [Tao-Winkler 2012] to deduce that

‖u(·, t)‖L∞(Ω) ≤ C(T ), t ∈ (0, T ) .

Hence, (u, v) exists globally for all t ≥ 0, if p+ 2q < 2
n .

In view of [Winkler 2010], (u, v) has to be unbounded if
F(u0, v0) ≤ −C(m) is satisfied and p+ q > 2

n .
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Open problem

Is there an optimal border between blowup in finite and
infinite time?
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Thank you for your kind attention!
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