Algèbre linéaire et géométrie I Août 2019, section mathématique

Documents autorisés.

Exercice 1. Soit $f \in \operatorname{End}_{\mathbb{R}}(\mathbb{R}^3)$ dont la matrice dans la base B = ((1,0,0),(0,1,0),(0,0,1)) est

$$M_B(f) = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 1 & 0 & 2 \end{pmatrix}.$$

Soient $v_1 = (2, 2, -1), v_2 = (0, 1, 0), v_3 = (1, 1, 1) \in \mathbb{R}^3$. Soient $V = \{u \in \mathbb{R}^3 \mid f(u) \in \langle v_2 + 3v_3 \rangle\}$ et $W = \langle v_1 + v_2, v_3 \rangle$.

- 1. Montrer que $C = (v_1, v_2, v_3)$ est une base de \mathbb{R}^3 et déterminer $M_C(f)$.
- 2. Déterminer une base de Ker(f) et montrer que $Im(f) = \{(x, y, z) \in \mathbb{R}^3 \mid x z = 0\}$.
- 3. Montrer que V est un sous-espace vectoriel de \mathbb{R}^3 et que $V = \langle v_1, v_2 + v_3 \rangle$.
- 4. Déterminer $\dim(V + f(W))$ et une base de $V \cap f(W)$.

Exercice 2. Soit E un \mathbb{R} -espace vectoriel de dimension 2 et $B=(e_1,e_2)$ une base de E. Soit $f\in \operatorname{End}_{\mathbb{R}}(E)$ tel que

$$M_B(f) = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}.$$

Soit l'application linéaire $\varphi : \operatorname{End}_{\mathbb{R}}(E) \to \operatorname{End}_{\mathbb{R}}(E), g \mapsto f \circ g.$

- 1. Montrer que $C = (2e_1 e_2, e_1 + 2e_2)$ est une base de E et déterminer $M_C(f)$.
- 2. Soit $g \in \operatorname{End}_{\mathbb{R}}(E)$. Montrer que $g \in \operatorname{Ker}(\varphi)$ ssi la dernière ligne de $M_C(g)$ est nulle.
- 3. Déterminer dim $Ker(\varphi)$ et dim $Im(\varphi)$.
- 4. Montrer que $\operatorname{End}_{\mathbb{R}}(E) = \operatorname{Ker}(\varphi) \oplus \operatorname{Im}(\varphi)$.

Exercice 3. Soient E un K-espace vectoriel de dimension finie et $g, h \in \text{End}_K(E)$. Soit V un sous-espace vectoriel de E tel que $E = \text{Ker}(g) \oplus V$.

- 1. Montrer que l'application linéaire $\gamma: V \to \operatorname{Im}(g), v \mapsto g(v)$ est bijective.
- 2. Montrer que si $\text{Im}(h) \subseteq \text{Im}(g)$, alors l'endomorphisme $f: E \to E, u \mapsto \gamma^{-1}(h(u))$ est bien défini et satisfait $g \circ f = h$.
- 3. Montrer qu'il existe $f \in \operatorname{End}_K(E)$ tel que $h = g \circ f$ ssi $\operatorname{Im}(h) \subseteq \operatorname{Im}(g)$. A-t-on unicité?