Reactive Synthesis of Systems over Data Words
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Figure 1. Universal co-Buchi automaton checking that
every request is eventually granted.

Known Results

O : F,"inthe future"

Figure 2. LTL formula expressing that for each client
c € {1,...,n}, eachof its requests is eventually granted

— Target implementation I is a deterministic transducer

Specification

Complexity

Oif miseven

— For instance, the specification Mod, = {(m, n) | m = n[2]} can be implemented by Parity : m + { 1iE m e odd

In Nondeterministic Blichi Automaton | ExpTime-complete (Blchi & Landweber, 1969)

Linear Temporal Logic formula

2-ExpTime-complete (Pnueli & Rosner, 1989)

Limitations

= > and 2. are assumed finite
= |mpractical for large alphabets (e.g. Figure 2)
= Cannot handle unbounded number of possible inputs

How To Model Executions?

Data Words

Sequencesof pairs(a,d) € Z x D

= > finite alphabet of labels
= P infinite set of data

1 2 2 3 1 3 1
req req grt req grt grt req "

Figure 4. A dataword with labels ~ = {req, grt} and data ©® = N.

— Large literature on data words:

= Kaminski and Francez, 1994
= Segoufin, 2006

= Bojanczyk, David, Muscholl, Schwentick, and Segoufin, 2011
= Schwentick and Zeume, 2012

Results
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2out = {grant(i) | i € N}

Figure 3. Unbounded number of clients.

How To Model Specifications?

Register Automata

Finite automata equipped with a finite set R of registers

= Storedata | r
= Formula ¢ to compare incoming data d with register content Tr

req req
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Figure 5. Universal co-Buchi register automaton checking that every request
is eventually granted (the ¢ = T tests are omitted).

Test-Free

= |nput transitions do not conduct test on data: ¢ is always T

= QOutput transitions output the content of some register: ¢ is
always an equality testd =Tr.

— Theregister automaton of Figure 5 is not test-free.

Bounded Synthesis

— The number of registers of the implementation is fixed.

= We assume the alphabet is infinite

How To Model Implementations?

Register Transducers
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Transitions are g q’

= j €2, 0 € 2t input and output letters

= ¢ atestover input data

" riy, € Rregister where the input datais stored
" rout € R register whose contentis output

req, T | |r,grant, Tr

Figure 6. Aregister transducer immediately granting each request.

Test-Free

= Defined analogously

i | lriﬂa o, TrOUJE /
N

= Transitions are g > g

— Theregister transducer of Figure 6 is test-free.

Future Work

= Examine the case where the number of registers of the implementation is not fixed.

= Synthesise from specifications expressed as logical formulae.

Specification (Register Automaton) | Status

Nondeterministic Buchi Undecidable

Universal co-Bulchi

Decidable (Khalimov, Maderbacher, & Bloem, 2018)
we provide simpler proof technigues

Nondeterministic Test-Free

Decidable (implementation is also Test-Free)

Proof Techniques

= Reduce to the finite case
= Keep track of equality relations between registers
= Abstract actions by equality types
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