
Reactive Synthesis of Systems over DataWords
Léo Exibard 1 2 Emmanuel Filiot 1 Pierre-Alain Reynier 2

1Méthodes Formelles et Vérification
Université libre de Bruxelles

2Laboratoire d'Informatique et Systèmes
Aix-Marseille Université

Synthesis Problem

Given Specification

S ⊆ In ×Out

i ∈ In

o1 ∈ Out

o2 ∈ Out

o3 ∈ Out

Does there exist Implementation

I : In → Out

i ∈ In

o1 ∈ Out

o2 ∈ Out

o3 ∈ Out

[i ∈ In, (i , I (i )) ∈ S

In

Out

I

S

→ For instance, the specificationMod2 = {(m, n) | m ≡ n[2]} can be implemented by Parity : m 7→

{
0 ifm is even

1ifm is odd

Reactive Synthesis

Specification

S ⊆ (Σin × Σout)
ω

i1i2 · · · ∈ Σin
ω

o1
1o

1
2 · · · ∈ Σout

ω

o2
1o

2
2 · · · ∈ Σout

ω

o3
1o

3
2 · · · ∈ Σout

ω

Synchronous execution i1o1i2o2 . . .

S is given as a language

Example

1 2

grant

req

req

grant

Σin = {req}

Σout = {grant}

Figure 1. Universal co-Büchi automaton checking that

every request is eventually granted.

n∧
c=1

�(reqc → ♦grantc)
Σin = {req1, . . . , reqn}

Σout = {grant1, . . . , grantn}

� : G , "always"

♦ : F , "in the future"

Figure 2. LTL formula expressing that for each client

c ∈ {1, . . . , n}, each of its requests is eventually granted

KnownResults

→ Target implementation I is a deterministic transducer

Specification Complexity

Nondeterministic Büchi Automaton ExpTime-complete (Büchi & Landweber, 1969)

Linear Temporal Logic formula 2-ExpTime-complete (Pnueli & Rosner, 1989)

Limitations

Σin and Σout are assumed finite

Impractical for large alphabets (e.g. Figure 2)

Cannot handle unbounded number of possible inputs

∧
c∈Î

�(req(c) → ♦grant(c)) Σin = {req(i ) | i ∈ Î}

Σout = {grant(i ) | i ∈ Î}

Figure 3.Unbounded number of clients.

⇒We assume the alphabet is infinite

HowTo Model Executions?

DataWords

Sequences of pairs (a, d ) ∈ Σ × D

Σ finite alphabet of labels

D infinite set of data

1 2 2 3 1 3 1
. . .

req req grt req grt grt req

Figure 4. A data word with labels Σ = {req, grt} and dataD = Î.

→ Large literature on data words:

Kaminski and Francez, 1994

Segoufin, 2006

Bojańczyk, David, Muscholl, Schwentick, and Segoufin, 2011

Schwentick and Zeume, 2012

HowTo Model Specifications?

Register Automata

Finite automata equipped with a finite set R of registers

Store data ↓r

Formulaϕ to compare incoming data d with register content ↑r

1 2 3

req

grant

req, ↓r

req

grant, d , ↑r

grant, d = ↑r

Figure 5. Universal co-Büchi register automaton checking that every request

is eventually granted (theϕ = > tests are omitted).

Test-Free

Input transitions do not conduct test on data: ϕ is always>

Output transitions output the content of some register: ϕ is

always an equality test d = ↑r .

→ The register automaton of Figure 5 is not test-free.

HowTo Model Implementations?

Register Transducers

Transitions are q
i ,ϕ | ↓rin, o, ↑rout
−−−−−−−−−−−−→ q ′:

i ∈ Σin, o ∈ Σout input and output letters

ϕ a test over input data

rin ∈ R register where the input data is stored

rout ∈ R register whose content is output

1

req,> | ↓r , grant, ↑r

Figure 6. A register transducer immediately granting each request.

Test-Free

Defined analogously

Transitions are q
i | ↓rin, o, ↑rout
−−−−−−−−−−−→ q ′

→ The register transducer of Figure 6 is test-free.

Results

Bounded Synthesis

→ The number of registers of the implementation is fixed.

Specification (Register Automaton) Status

Nondeterministic Büchi Undecidable

Universal co-Büchi
Decidable (Khalimov, Maderbacher, & Bloem, 2018)

we provide simpler proof techniques

Nondeterministic Test-Free Decidable (implementation is also Test-Free)

Proof Techniques

Reduce to the finite case

Keep track of equality relations between registers

Abstract actions by equality types

FutureWork

Examine the case where the number of registers of the implementation is not fixed.

Synthesise from specifications expressed as logical formulae.

Synthesise from asynchronous specifications and implementations: no strict alternation between

input letters and output letters{ gather information before producing output.

Relax constraints over the implementation: synthesise an algorithm instead of a transducer (in the

spirit of Ehlers, Seshia, & Kress-Gazit, 2014)

References

Bojańczyk, M., David, C., Muscholl, A., Schwentick, T., & Segoufin, L. (2011). Two-variable logic on

data words. ACM Transactions on Computational Logic.

Büchi, J. R. & Landweber, L. H. (1969). Solving Sequential Conditions by Finite-State Strategies.

Transactions of the AmericanMathematical Society.

Ehlers, R., Seshia, S. A., & Kress-Gazit, H. (2014). Synthesis with identifiers. In 15th International

Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI 2014).

Kaminski, M. & Francez, N. (1994). Finite-memory automata. Theoretical Computater Science.

Khalimov, A., Maderbacher, B., & Bloem, R. (2018). Bounded synthesis of register transducers. In

16th International Symposium on Automated Technology for Verification and Analysis (ATVA

2018).

Pnueli, A. & Rosner, R. (1989). On the synthesis of a reactive module. In 16th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL 1989).

Schwentick, T. & Zeume, T. (2012). Two-variable logic with two order relations. LogicalMethods in

Computer Science.

Segoufin, L. (2006). Automata and logics for words and trees over an infinite alphabet. In Com-

puter Science Logic.


