Reactive Synthesis of Systems over Data Words

L €0 Exibard ! 2

"Méthodes Formelles et Vérification
Universite libre de Bruxelles

Emmanuel Filiot

Pierre-Alain Reynier ?

?|_aboratoire d'Informatique et Systémes
Aix-Marsellle Universite

Synthesis Problem Reactive Synthesis
o' € Out 010, € Zout?
Given i €ln Specliﬁcatci)on 0% € Out fip- - € X @ Specification 0795 " € Zout”
S C Inx Out SC(ZinX2Zou)?
03 e Out = (N out) 01303. . c zoutw
= Synchronous execution iyo01ip05 . ..
Does there exist i €1In Implementation 0?2 e Out = Sisgiven as a language
I:In— Out
Example
. : . grant req
Vieln (i,I(i)e S req]
> = {req} Zin ={reay,..., red,}
’.@ 2 out = {grant} /\ D(reqc — Ograntc) 2out = {granty,..., grant,}
Out c=1 O : G, "always"

grant

Figure 1. Universal co-Buchi automaton checking that
every request is eventually granted.

Known Results

O : F,"inthe future"

Figure 2. LTL formula expressing that for each client
c € {1,...,n}, eachof its requests is eventually granted

— Target implementation I is a deterministic transducer

Specification

Complexity

Oif miseven

— For instance, the specification Mod, = {(m, n) | m = n[2]} can be implemented by Parity : m + { 1iE m e odd

In Nondeterministic Blichi Automaton | ExpTime-complete (Blchi & Landweber, 1969)

Linear Temporal Logic formula

2-ExpTime-complete (Pnueli & Rosner, 1989)

Limitations

= > and 2. are assumed finite
= |mpractical for large alphabets (e.g. Figure 2)
= Cannot handle unbounded number of possible inputs

How To Model Executions?

Data Words

Sequencesof pairs(a,d) € Z x D

= > finite alphabet of labels
= P infinite set of data

1 2 2 3 1 3 1
req req grt req grt grt req "

Figure 4. A dataword with labels ~ = {req, grt} and data ©® = N.

— Large literature on data words:

= Kaminski and Francez, 1994
= Segoufin, 2006

= Bojanczyk, David, Muscholl, Schwentick, and Segoufin, 2011
= Schwentick and Zeume, 2012

Results

/\ O(reg(c) — ¢grant(c))

ceN

Zin ={req(/) | i € N}
2out = {grant(i) | i € N}

Figure 3. Unbounded number of clients.

How To Model Specifications?

Register Automata

Finite automata equipped with a finite set R of registers

= Storedata | r
= Formula ¢ to compare incoming data d with register content Tr

req req

req, Lr %}\\ grant,d = Tr‘Q

=¢

grant grant,d #Tr

Figure 5. Universal co-Buchi register automaton checking that every request
is eventually granted (the ¢ = T tests are omitted).

Test-Free

= |nput transitions do not conduct test on data: ¢ is always T

= QOutput transitions output the content of some register: ¢ is
always an equality testd =Tr.

— Theregister automaton of Figure 5 is not test-free.

Bounded Synthesis

— The number of registers of the implementation is fixed.

= We assume the alphabet is infinite

How To Model Implementations?

Register Transducers

i,<P | \Lriﬂ’ Oa TrOUt /
N
7

Transitions are g q’

= j €2, 0 € 2t input and output letters

= ¢ atestover input data

" riy, € Rregister where the input datais stored
" rout € R register whose contentis output

req, T | |r,grant, Tr

Figure 6. Aregister transducer immediately granting each request.

Test-Free

= Defined analogously

i | lriﬂa o, TrOUJE /
N

= Transitions are g > g

— Theregister transducer of Figure 6 is test-free.

Future Work

= Examine the case where the number of registers of the implementation is not fixed.

= Synthesise from specifications expressed as logical formulae.

Specification (Register Automaton) | Status

Nondeterministic Buchi Undecidable

Universal co-Bulchi

Decidable (Khalimov, Maderbacher, & Bloem, 2018)
we provide simpler proof technigues

Nondeterministic Test-Free

Decidable (implementation is also Test-Free)

Proof Techniques

= Reduce to the finite case
= Keep track of equality relations between registers
= Abstract actions by equality types

References

= Synthesise from asynchronous specifications and implementations: no strict alternation between
input letters and output letters ~» gather information before producing output.

= Relax constraints over the implementation: synthesise an algorithm instead of a transducer (in the
spirit of Ehlers, Seshia, & Kress-Gazit, 2014)

Bojanczyk, M., David, C., Muscholl, A., Schwentick, T., & Segoufin, L. (2011). Two-variable logic on
data words. ACM Transactions on Computational Logic.

Blchi, J. R. & Landweber, L. H. (1969). Solving Sequential Conditions by Finite-State Strategies.
Transactions of the American Mathematical Society.

Ehlers, R., Seshia, S. A, & Kress-Gazit, H. (2014). Synthesis with identifiers. In 15th International
Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI 2014,).

fnis

LA LIBERTE DE CHERCHER

Kaminski, M. & Francez, N. (1994). Finite-memory automata. Theoretical Computater Science.

Khalimov, A., Maderbacher, B., & Bloem, R. (2018). Bounded synthesis of register transducers. In
16th International Symposium on Automated Technology for Verification and Analysis (ATVA
2018).

Pnueli, A. & Rosner, R. (1989). On the synthesis of a reactive module. In 16th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL 1989).

Schwentick, T. & Zeume, T. (2012). Two-variable logic with two order relations. Logical Methods in
Computer Science.

Segoufin, L. (2006). Automata and logics for words and trees over an infinite alphabet. In Com-
puter Science Logic.

univers:té

DDDDDDDDDDDDDD
SSSSSSSSS

F
L 1 Jd (Aix Marseille

