Subgame optimal strategies in zero-sum stochastic games with tolerance levels

János Flesch, Jean-Jacques Herings, Jasmine Maes, Arkadi Predtetchinski

Maastricht University
The Netherlands

14 March 2019 Mons, Belgium Theory and Algorithms in Graph and Stochastic Games

ullet Finite action spaces ${\mathcal A}$ and ${\mathcal B}$ and countable state space ${\mathcal X}$.

- ullet Finite action spaces ${\mathcal A}$ and ${\mathcal B}$ and countable state space ${\mathcal X}$.
- Transition probability q

Generates a play
$$p = \underbrace{x_0}_{\text{initial state}} \underbrace{a_1b_1x_1}_{t=1} \underbrace{a_2b_2x_2}_{t=3} \underbrace{a_3b_3x_3}_{t=3}...$$

- ullet Finite action spaces ${\mathcal A}$ and ${\mathcal B}$ and countable state space ${\mathcal X}$.
- Transition probability q
- ullet Set of plays ${\cal P}$

Generates a play
$$p = \underbrace{x_0}_{\text{initial state}} \underbrace{a_1b_1x_1}_{t=1} \underbrace{a_2b_2x_2}_{t=2} \underbrace{a_3b_3x_3}_{t=3} \dots$$

- Finite action spaces A and B and countable state space X.
- Transition probability q
- ullet Set of plays ${\cal P}$
- Bounded **Borel measurable** payoff function $u : \mathcal{P} \to \mathbb{R}$. (can be generalized to universally measurable)

• Set of histories: \mathcal{H} $h = \underbrace{x_0}_{\text{initial state}} \underbrace{a_1b_1x_1}_{t=1} \underbrace{a_2b_2x_2}_{t=2} \underbrace{a_3b_3x_3}_{t=3}, \text{ length } ||h|| = 3$

• Behavioral strategies:

Player 1
$$\sigma: \mathcal{H} \to \Delta(\mathcal{A})$$
 Player 2 $\tau: \mathcal{H} \to \Delta(\mathcal{B})$

- Probability space $(\mathcal{P}, \mathcal{F}, \mathbb{P}_{h,\sigma,\tau})$
- Value exists (Maitra, Sudderth (1998), Martin (1998))

$$v(h) = \sup_{\sigma \in \mathcal{S}_1} \inf_{\tau \in \mathcal{S}_2} \mathbb{E}_{h,\sigma,\tau} [u] = \inf_{\tau \in \mathcal{S}_2} \sup_{\sigma \in \mathcal{S}_1} \mathbb{E}_{h,\sigma,\tau} [u]$$

• Set of histories: \mathcal{H} $h = \underbrace{x_0}_{\text{initial state}} \underbrace{a_1b_1x_1}_{t=1} \underbrace{a_2b_2x_2}_{t=2} \underbrace{a_3b_3x_3}_{t=3}, \text{ length } ||h|| = 3$

• Behavioral strategies:

Player 1
$$\sigma: \mathcal{H} \to \Delta(\mathcal{A})$$
 Player 2 $\tau: \mathcal{H} \to \Delta(\mathcal{B})$

- Probability space $(\mathcal{P}, \mathcal{F}, \mathbb{P}_{h,\sigma,\tau})$
- Value exists (Maitra, Sudderth (1998), Martin (1998))

$$\nu(h) = \sup_{\sigma \in \mathcal{S}_1} \inf_{\tau \in \mathcal{S}_2} \mathbb{E}_{h,\sigma,\tau} \left[u \right] = \inf_{\tau \in \mathcal{S}_2} \sup_{\sigma \in \mathcal{S}_1} \mathbb{E}_{h,\sigma,\tau} \left[u \right]$$

Take the perspective of maximizing player

Main concept:

Subgame ϕ -optimal strategies

Strategies that perform "good enough" across all subgames.

Main concept: Subgame ϕ -optimal strategy

Optimal strategy

The strategy $\sigma \in \mathcal{S}_1$ is an **optimal strategy** if for every $\tau \in \mathcal{S}_2$:

$$\mathbb{E}_{\sigma,\tau}[u] \geq v.$$

Main concept: Subgame ϕ -optimal strategy

Optimal strategy

The strategy $\sigma \in \mathcal{S}_1$ is an **optimal strategy** if for every $\tau \in \mathcal{S}_2$:

$$\mathbb{E}_{\sigma,\tau}[u] \geq v$$
.

Subgame optimal strategy

The strategy $\sigma \in S_1$ is a **subgame optimal strategy** if for every $\tau \in S_2$ and for every history $h \in \mathcal{H}$:

$$\mathbb{E}_{h,\sigma,\tau}\left[u\right] \geq \frac{v(h)}{}.$$

Main concept: Subgame ϕ -optimal strategy

Optimal strategy

The strategy $\sigma \in \mathcal{S}_1$ is an **optimal strategy** if for every $\tau \in \mathcal{S}_2$:

$$\mathbb{E}_{\sigma,\tau}[u] \geq v$$
.

Subgame optimal strategy

The strategy $\sigma \in \mathcal{S}_1$ is a **subgame optimal strategy** if for every $\tau \in \mathcal{S}_2$ and for every history $h \in \mathcal{H}$:

$$\mathbb{E}_{h,\sigma,\tau}[u] \geq v(h).$$

Subgame ϕ -optimal strategy

The strategy $\sigma \in \mathcal{S}_1$ is a **subgame** ϕ -optimal strategy if for every $\tau \in \mathcal{S}_2$ and for every history $h \in \mathcal{H}$:

$$\mathbb{E}_{h,\sigma,\tau}[u] \geq v(h) - \phi(h)$$
.

Special cases and equilibria

Subgame ϕ -optimal strategy

The strategy $\sigma \in \mathcal{S}_1$ is a **subgame** ϕ **-optimal strategy** if for every $\tau \in \mathcal{S}_2$ and for every history $h \in \mathcal{H}$:

$$\mathbb{E}_{h,\sigma,\tau}\left[u\right] \geq v(h) - \phi(h).$$

- $\phi(h) = 0$ everywhere \Rightarrow subgame optimal strategy. \sim Subgame perfect equilibrium
- $\phi(h) = \epsilon$ everywhere \Rightarrow subgame ϵ -optimal strategy. \sim Subgame perfect ϵ -equilibrium
- Tolerance function $\phi: \mathcal{H} \to [0, \infty)$ $\sim \phi$ -tolerance equilibrium (Flesch, Predtetchinski (2016))

• NO subgame ϕ -optimal strategy, (even if $\phi > 0$).

$$\mathbb{E}_{h,\sigma,\tau}[u] = u(\pi(\sigma,\tau;h)) \ge v(h) - \phi(h).$$

$$v(h) \quad \frac{1}{2} \qquad \qquad \frac{2}{3} \qquad \qquad \frac{3}{4} \qquad \qquad \frac{4}{5}$$

$$\phi(h) \quad \frac{1}{4} \qquad \qquad \frac{1}{9} \qquad \qquad \frac{1}{16} \qquad \qquad \frac{1}{25}$$

$$q \qquad q \qquad q$$

$$u \quad 0 \qquad \qquad \frac{1}{2} \qquad \qquad \frac{1}{2} \qquad \qquad \frac{2}{3} \qquad \qquad \frac{2}{3} \qquad \qquad \frac{3}{4} \qquad \qquad \frac{3}{4} \qquad \qquad \frac{4}{5}$$

- NO subgame ϕ -optimal strategy, (even if $\phi > 0$).
- For every $\epsilon > 0 \Rightarrow$ there exists a subgame ϵ -optimal strategy.

Question 1:

What are the **necessary and** sufficient conditions for a strategy to be a subgame ϕ -optimal strategy?

Characterization for subgame optimal strategies

Theorem (Characterization)

A strategy σ is a **subgame optimal strategy** for player 1 if and only if for every $\tau \in S_2$ and for every $h \in \mathcal{H}$ with $\|h\| = t$ we have that:

- **1** (1-day optimal) $\mathbb{E}_{h,\sigma,\tau}\left[V^{t+1}\right] \geq v(h)$.
- **(equalizing)** $u \ge \limsup_{n \to \infty} V^n$, $\mathbb{P}_{h,\sigma,\tau} a.s.$

Sufficient conditions for subgame ϕ -optimal strategies

Theorem (Characterization)

A strategy σ is a **subgame optimal strategy** for player 1 if and only if for every $\tau \in S_2$ and for every $h \in \mathcal{H}$ with $\|h\| = t$ we have that:

- **1** (1-day optimal) $\mathbb{E}_{h,\sigma,\tau}\left[V^{t+1}\right] \geq v(h)$.
- **2** (equalizing) $u \ge \limsup_{n \to \infty} V^n$, $\mathbb{P}_{h,\sigma,\tau} a.s.$

Theorem (Sufficient condition)

A strategy σ is a **subgame** ϕ -optimal strategy for player 1 if for every $\tau \in S_2$ and for every $h \in \mathcal{H}$ with $\|h\| = t$ there exist $\phi_1(h)$ and $\phi_2(h)$ such that:

- $\phi_1(h) + \phi_2(h) = \phi(h)$
- **2** (*n*-day ϕ_1 -optimal) $\mathbb{E}_{h,\sigma,\tau}[V^{t+n}] \geq v(h) \phi_1(h), \forall n \in \mathbb{N}.$
- **3** $(\phi_2$ -equalizing) $u \ge \limsup_{n \to \infty} V^n \phi_2(h)$, $\mathbb{P}_{h,\sigma,\tau} a.s.$

Necessary condition for subgame ϕ -optimal strategies

Theorem (Characterization)

A strategy σ is a **subgame optimal strategy** for player 1 if and only if for every $\tau \in S_2$ and for every $h \in \mathcal{H}$ with $\|h\| = t$ we have that:

- **1** (1-day optimal) $\mathbb{E}_{h,\sigma,\tau}\left[V^{t+1}\right] \geq \nu(h)$.
- **2** (equalizing) $u \ge \limsup_{n \to \infty} V^n$, $\mathbb{P}_{h,\sigma,\tau} a.s.$

Theorem (Necessary condition)

If a strategy σ is a **subgame** ϕ -optimal strategy for player 1 then for every $\tau \in S_2$ and for every $h \in \mathcal{H}$ with ||h|| = t:

- **1** (*n*-day ϕ -optimal) $\mathbb{E}_{h,\sigma,\tau}[V^{t+n}] \geq v(h) \phi(h), \forall n \in \mathbb{N}$.
- **2** (ϕ -equalizing) $u \ge \limsup_{n \to \infty} (V^n \Phi^n)$, $\mathbb{P}_{h,\sigma,\tau} a.s.$

Question 2:

When does a subgame ϕ -optimal strategy exist? (Assume $\phi > 0$)

Existence of subgame ϕ -optimal strategies

$\mathsf{Theorem}$

Player 1 has a subgame ϕ -optimal strategy for $\phi > 0$, if every $p \in \mathcal{P}$ satisfies at least one of the following conditions:

- (point of upper-semicontinuity)

 If $\lim_{t\to\infty} p_t = p$ then $u(p) \ge \limsup u(p_t)$,
- ② (positive limit inferior) $\liminf_{t\to\infty}\phi(p_{|t})>0.$

Extreme cases:

- The payoff-function is upper-semicontinuous. Laraki, Maitra and Sudderth (2013)
- $\phi(h) = \epsilon$ for every $h \in \mathcal{H}$. Mashiah-Yaakovi (2015)

Construction: Use a switching strategy σ^{ϕ}

Intuition

To be a subgame ϕ -optimal strategy the switching strategy needs to satisfy that for every $\tau \in \mathcal{S}_2$, $h \in \mathcal{H}$ with ||h|| = t:

- $u \ge \limsup_{n \to \infty} V^n \phi(h)/2 \quad \mathbb{P}_{h,\sigma,\tau}$ -a.s.
 - Is always fulfilled along plays which are points of upper semicontinuity.
 - **Q** Is fulfilled when we only switch finitely often. (Along plays with $\liminf_{t\to\infty}\phi(p_{|t})>0$ the probability that we need to switch infinitely often is 0.)

Question 3:

What is the relationship between the existence of subgame optimal strategies and the existence of subgame ϕ -optimal strategies?

Theorem

There exists a subgame ϕ -optimal strategy for every $\phi > 0$.

⇔ There exists a subgame optimal strategy.

Theorem

There exists a subgame ϕ -optimal strategy for every $\phi > 0$.

⇔ There exists a subgame optimal strategy.

• Difference with subgame ϵ -optimal strategies:

There exists a subgame ϵ -optimal strategy for every $\epsilon > 0$.

→ There exists a subgame optimal strategy.

Theorem

There exists a subgame ϕ -optimal strategy for every $\phi > 0$.

⇔ There exists a subgame optimal strategy.

- Difference with subgame ϵ -optimal strategies: There exists a subgame ϵ -optimal strategy for every $\epsilon > 0$.
 - → There exists a subgame optimal strategy.
- Not continuity property: payoff-function *u* is only assumed to be bounded and Borel-measurable.

Theorem

There exists a subgame ϕ -optimal strategy for every $\phi > 0$.

⇔ There exists a subgame optimal strategy.

- Difference with subgame ε-optimal strategies:
 There exists a subgame ε-optimal strategy for every ε > 0.
 ⇒ There exists a subgame optimal strategy.
- **Not continuity property:** payoff-function *u* is only assumed to be bounded and Borel-measurable.
- Instead: Use necessary conditions for subgame ϕ -optimal strategy and the characterization for subgame optimal strategies.

Conclusion

- We study **Subgame** ϕ -optimal strategies, i.e. strategies of the maximizing player that guarantee the value in every subgame up till a subgame dependent tolerance level
- ② We give necessary and sufficient conditions for such subgame ϕ -optimal strategies.
- **③** We provide conditions for the existence of subgame ϕ -optimal strategies.
- We show that if a subgame ϕ -optimal strategy exists for any positive tolerance function ϕ , then so does a subgame optimal strategy.