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Introduction
We investigate integer parts of ordered fields. We prove the
existence of normal integer parts for a class of ordered fields.
Along with the normal one we construct infinitely many elementary
non-equivalent integer parts for each field from this class.

K is an ordered field,
G is an ordered abelian group (all the orders are total).

A discretely ordered subring M ⊆ K is called an Integer Part
of K if x ∈ K ⇒ ∃z ∈ M (z ≤ x < z + 1).
[Shepherdson] Models of Open Induction (OI) are the IP’s of
real closed fields (RCF).

OI - a first order theory in the language L = {0, 1,+, ·, <} which
has the following axioms:

axioms of DOR (discretely ordered ring),
for each quantifier free L-formula ψ(~x , y) the following axiom:

Ind(ψ) :
(
ψ(~x , 0) ∧ ∀y ≥ 0 [ψ(~x , y)→ ψ(~x , y + 1)]

)
→

→ ∀y ≥ 0 [ψ(~x , y)]
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Introduction

[Wilkie] Each discretely ordered Z-ring can be embedded in a
model of OI.

Lou van den Dries extended the previous result for the normal
case.

Macintyre and Marker gave several constructions for extending
discretely ordered rings and proved that some classical
theorems of primes fail in OI or in NOI (=normality+OI).

[Mourgues and Ressayre] Each RCF has an IP.

If k is archimedean then k((G<))⊕ Z is an IP of k((G )).

A subfield F ⊆ k((G )) is called truncation closed if∑
g∈G

ag tg ∈ F ⇒
∑

g∈G ,g<g0

ag tg ∈ F (g0 ∈ G ).

[in symbols F ⊆tr k((G ))].

F ⊆tr k((G )) ⇒ F has an IP: Neg(F )⊕ Z.
[Neg(F ) = F ∩ k((G<)), G< = {g ∈ G |g < 0}]
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Introduction
Construction by Mourgues and Ressayre: K is an RCF.

a) ∃ K ↪→tr k((G )) (for suitable k and G ).

b) K has an IP.

The IP constructed in this way is called truncation IP of K .

Related Results.

Fornasiero extended these results for ordered Henselian fields.

Boughattas constructed a p-real closed field with no IP (p is
an arbitrary prime).

The truncation IP of a non-archimedean RCF is never normal (as√
2 is rational in such an IP).

Normality Condition. An IP M is called normal if
(x , y , c1, . . . , cn ∈ M):

xn + c1xn−1y + · · ·+ cnyn = 0⇒ ∃z ∈ M(x = yz).
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Introduction

The following natural question is posed by S. Kuhlmann:

Does any RCF have a normal IP?

Berarducci and Otero constructed a normal IP of the field k(t)r

(“r” signifies the real closure, t � 1), where

k is a recursive RCF, k ⊆ R, trdeg(k) = ℵ0.

This gave a positive answer to the question (posed by Macintyre
and Marker) on existence of

a nonstandard recursive normal model of OI
with cofinal set of primes.

Thus the field k(t)r has at least two elementary non-equivalent
IP’s.



Main Results

We give a recurrent construction which allows to generate
new IP’s based on the existed ones.

We construct normal IP’s for a class of ordered fields, giving a
partial answer to the above mentioned question by S.
Kuhlmann. This class consists of some truncation closed
subfields of R((G )) where G has an anti-well-ordered
value-set.

Each field from that class possesses an IP which satisfies the
same homogeneous existential formulae as a prescribed
archimedean field with an infinite transcendence degree.

The class of elementary non-equivalent IP’s of each field from
the considered class is continuum.



Outline of the Main Steps

Basic Construction

Anti-well-ordered Case of the Value Set

Sketch of the Proofs of Main Theorems

Remarks



Basic Construction

Proposition

Let

(a) K ⊆ F ⊆tr K ((G )),

(b) M ⊆ H ⊆ K . M is an IP, and H is a subfield of K ,

(c) µ
def
= trdeg(K/H) ≥ |Neg(F )|,

(d) cf (µ) > |Supp(u)|, for all u ∈ Neg(F ).

Then ∃ T ⊆ F ∩ K ((G≤)) such that

the elements of T are algebraically independent over H and

H[T ]0 ⊕M is an IP of F .

We denote:

H[T ]0 = {p(a1, . . . , an)|ai ∈ T , p ∈ H[X ]0},
H[X ]0 = {p ∈ H[X ] : constant term of p is 0}
Neg(F ) = F ∩ K ((G<)).
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Basic Construction
Proof Sketch

E - transcendence base of K/H, µ̄ - the initial ordinal of µ.

choose a suitable well-order ≺ on E ,

induce norm functions ‖ · ‖ : K → E , ‖ · ‖ : Neg(F )→ E ,

construct a map λ : Neg(F )→ E so that

‖u‖ < λ(u) (u ∈ Neg(F )),

define T
def
= {u + λ(u)|u ∈ T1}, where T1 ⊆ Neg(F ) will be

defined based on the map λ,

prove that T is the desired set.

[Note that λ(u) ∈ E ⊆ K , whence T ⊆ F ∩ K ((G≤)).]



Basic Construction
Proof Sketch. Construction of λ

1) Let (E ,≺) ' µ̄ω+1 (ordinal exponentiation).

2) He
def
= H((−∞, e])alg

K (e ∈ E ), a ∈ K , then

‖a‖ def
= min{e ∈ E : a ∈ He}.

Given 0 6= u ∈ Neg(F ), we define

‖u‖ def
= the lowest upper bound of {‖a‖ : a ∈ Coef (u)}.

3) ‖u‖ is well-defined. In fact, by using (d), we have

Neg(F ) = ∪
e∈E

[F ∩ He((G<))]

and
‖u‖ = min{e ∈ E |u ∈ He((G<))}.

We let ‖0‖ = −∞, Ê = E ∪ {−∞}.

4) Ue
def
= {u ∈ Neg(F ) : ‖u‖ = e} (e ∈ Ê ).



Basic Construction
Proof Sketch. Construction of λ

5) We have the following partition of Neg(F ):

Neg(F ) = t
e∈Ê

Ue

6) Choose (Ue ,≺e) ' the initial ordinal of cardinality |Ue |.
Define order on Neg(F ) lexicographically (u ∈ Ue1 ,w ∈ Ue2):

u ≺ w
def⇔ [e1 ≺ e2 ∨ (e1 = e2 ∧ u ≺e1 w)].

7) ∃ ϕ : µ̄× E → E order-isomorphism
(µ̄× E is ordered lexicographically from the right,
µ̄ · µ̄ω+1 = µ̄ω+1).

8) Se
def
= {ϕ(i , e ′)|i < µ̄} ' µ̄ (e ′ is the successor of e in E ).

E ⊇ t
e∈Ê

Se . (1)

9) |Ue | ≤ |Neg(F )| ≤ µ (by virtue of (c))
⇒ ∃ an isotonic map λe : Ue → Se .



Basic Construction
Proof Sketch. The Integer Part

10) We define λ : Neg(F )→ E by: λ(u)
def
= λe(u) (u ∈ Ue).

Thus, λ is isotonic. Moreover,

e ≺ ϕ(i , e ′)⇒ e � Se ⇒ ‖u‖ < λ(u).

11) Define the subset T1 ⊆ Neg(F ) by the following induction:

0 6∈ T1 [note: 0 = min(Neg(F ))],
0 6= w ∈ Neg(F ). By definition w 6∈ T1 iff there exist n ∈ N,
ui ∈ T1 (ui ≺ w , i = 1, n) and p ∈ H[~x ] satisfying

w = p(u1 + λ(u1), . . . , un + λ(un))− p(λ(u1), . . . , λ(un)).

12) The rest is to show that T = {u + λ(u)|u ∈ T1} satisfies the
assertions based on the following facts.

(?) u1 ≺ · · · ≺ un ∈ T1 ⇒ λ(un) ∈ K ((G )) is transcendent over
H(u1, . . . , un, λ(u1), . . . , λ(un−1)).

(??) p(u1 + λ(u1), . . . , un + λ(un)) = p(λ(u1), . . . , λ(un))
p ∈ H[~x ], ui ∈ T1 (pairwise distinct, i = 1, n) ⇒ p ≡ const.



Anti-well-ordered case of the value set

The elements g , g1 ∈ G are called archimedean equivalent
(g ∼ g1) if there exists n ∈ N such that

|g | ≤ n|g1| & |g1| ≤ n|g |.

The order < on the set [G ]
def
= {[g ]|g ∈ G} is defined by:

[g ] < [g1]
def⇔ |g | > |g1| & g 6∼ g1

(note that [0] is the greatest element).

The natural valuation on G is the map v : G → [G ] defined
by: v(g) = [g ].

The set Γ = [G ] \ {[0]} is called the value set of G .

Hahn’s Theorem states that each ordered abelian group G can
be embedded in the Hahn group RΓ.

RΓ = {g : Γ→ R : Supp(g) is well-ordered}.
+ is pointwise and < is lexicographic (from the left) in RΓ.
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Anti-well-ordered case of the value set

We will consider the case when Γ is anti-well-ordered:

Γ ' α? = (α,>) (ordinal with reversed order).

Thus, G ⊆ Rα?
.

Convex subgroups of G (γ ≤ α):

Cγ = {g ∈ G |v(g) ≤ γ} and Dγ = {g ∈ G |v(g) < γ}.

Truncation closed subfields

Let G be divisible, and let R(G ) ⊆ F ⊆tr R((G )),

Given γ ≤ α we denote

Fγ = F ∩ R((Cγ)) and F̄γ = F ∩ R((Dγ)).



Anti-well-ordered case of the value set

Thus
R(Cγ) ⊆ Fγ ⊆tr R((Cγ)) and Fα = F̄α = F .

Given γ < β ≤ α one has a canonical order-preserving
isomorphism:

Dβ
∼→ Dβ/Dγ

→
× Dγ .

This induces a canonical isomorphism

ρ : R((Dβ))→ R((Dγ))((Dβ/Dγ)).

ρ preserves the truncation closed subfields,

ρ is identical on R((Dγ)).

We have
F̄γ ⊆ ρ( ∪

i<β
Fi ) ⊆tr F̄γ((Dβ/Dγ)). (2)



Sketch of the Proofs of Main Theorems

R - an integral domain, char(R) = 0 (Z ⊆ R),

TH∃,h(R) - the part of ∃-theory of R consisting of
homogeneous formulae (in the language {0, 1,+, ·}).

We call a formula homogeneous if its each atomic subformula
has a form f (~x) = 0 (or f (~x) 6= 0) where f ∈ Z[~x ] is
homogeneous.

k0 - an archimedean field (k0 ⊆ R), trdeg(R/k0) = 2ℵ0 .

Lemma 1. Let R be an integral domain, char(R) = 0, and let
X 6= ∅ be a set of variables. Then

a) TH∃,h(R) ≡ TH∃,h(R[X ]) ≡ TH∃,h(R[X ]0 ⊕ Z),

b) if R is normal then Quot(R)[X ]0 ⊕ R is normal.

Lemma 2.

a) Let K ⊆ L ⊆ F ⊆tr K ((G )), L ⊆tr K ((G )), and let
M ⊆ F ∩ K ((G≤)) be an IP of F . Then L ∩M is an IP of L.

b) if M is normal then L ∩M is normal.
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Sketch of the Proofs of Main Theorems

In the following theorem we construct IP’s for a class of ordered
fields whose homogeneous theories are equivalent to TH∃,h(k0).

Theorem

Let G be a divisible ordered abelian (non-trivial) group with
anti-well-ordered value set α?. Let R(G ) ⊆ F ⊆tr R((G )) and
|Fγ | > |γ| (γ ≤ α). Then, assuming GCH, there exists an IP M of
F such that TH∃,h(M) ≡ TH∃,h(k0).

The proof is by induction and is mainly based on the
aforementioned iterated construction (Proposition 1).

let I = {γ ≤ α : i < γ ⇒ |Fi | < |Fγ |}.
γ̂ is the successor of γ in I (γ = max(I )⇒ γ̂ = α + 1).

γ̃ - the initial ordinal of |Fγ |. One has γ̂ ≤ γ̃.
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Sketch of the Proofs of Main Theorems

By induction on γ ∈ I we construct a sequence of DOR’s
(Mj | γ ≤ j < γ̂) such that

Mj be an IP of Fj ,

the sequence (Mj | j < γ̂) be a chain,

TH∃,h(Mj) ≡ TH∃,h(k0).

Induction Base. γ = 0. We have

R ⊆ ∪i<0̂Fi ⊆tr R((D0̂)).

Set K = R, F = ∪i<0̂Fi in the Proposition 1 [conditions of
Proposition hold with CH]. ⇒
∃ a subset T ⊆ (∪i<0̂Fi ) ∩ R((D≤

0̂
)) such that

the elements of T are algebraically independent over k0,

k0[T ]0 ⊕ Z is an IP of ∪i<0̂Fi ,

T ∩ F0 6= ∅ (can be provided by construction).

We have Mi
def
= Fi ∩ (k0[T ]0 ⊕ Z) is an IP of Fi , (Mi | i < 0̂) is a

chain and TH∃,h(Mi ) ≡ TH∃,h(k0).
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Sketch of the Proofs of Main Theorems
Induction Step. γ ∈ I , γ is limit. Let we have the following data:

a chain (Mi |i < γ), where Mi is an IP of Fi ,

TH∃,h(Mi ) ≡ TH∃,h(k0).

We will construct a chain (Mj |γ ≤ j < γ̂) preserving the above
conditions.

1) M̄
def
= ∪i<γMi ⊆ F̄γ is a discretely ordered subring and

TH∃,h(M̄) ≡ TH∃,h(k0).

2) Denote L = ∪
i<γ̂

Fi and Bγ = Dγ̂/Dγ .

Consider the above mentioned isomorphism
ρ : R((Dγ̂))→ R((Dγ))((Dγ̂/Dγ)). We get

F̄γ ⊆ ρ(L) ⊆tr F̄γ((Bγ)). (3)

We are going to show that the conditions of Proposition 1 hold for
the field extension (3) (we replace H by Quot(M̄)).



Sketch of the Proofs of Main Theorems
The Conditions of Proposition 1.

(a) we replace K y F̄γ , F y ρ(L), G y Bγ .

(b) H = Quot(M̄) is a subfield and M̄ is an IP of F̄γ .

(c) µ
def
= trdeg(F̄γ/Quot(M̄)) = |L| [use GCH and the condition

|Fγ | > |γ|].
(d) cf (µ) > |S | for each well-ordered subset S ⊆ B<

γ [use the
inequality γ̂ ≤ γ̃].

Thus, ∃ a subset T ⊆ ρ(L) ∩ F̄γ((B≤γ )) such that

Z
def
= Quot(M̄)[T ]0 ⊕ M̄ is an IP of ρ(L) and the elements of T

are algebraically independent over Quot(M̄).

γ ≤ j < γ̂ ⇒ Mj
def
= Fj ∩ρ−1(Z ) is an IP of Fj (see Lemma 2).

M̄ ⊆ Mj . Thus, (Mj | j < γ̂) is a chain.

∃ an embedding Mj ↪→ Z over M̄. Thus,
TH∃,h(Mj) ≡ TH∃,h(M̄) ≡ TH∃,h(k0) (see Lemma 1).
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Sketch of the Proofs of Main Theorems

Theorem

(Same hypotheses as in Theorem 1).

1) The number of elementary non-equivalent IP’s of F is
continuum.

2) F has a normal IP.

Proof.

1) Let A be a subset of the set of prime numbers, and let
k0 = Q({21/p|p ∈ A}),
then we get an IP, say MA, of F such that
TH∃,h(MA) ≡ TH∃,h(k0).
Now, let ψn (n ∈ N) be the formula ∃x , y (x 6= 0∧ xn = 2yn).
For p a prime, we have p ∈ A⇔ k0 |= ψp ⇔ MA |= ψp.

2) Set k0 = Q in the proof of Theorem 1
(use Lemmas 1,b and 2,b).
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Sketch of the Proofs of Main Theorems

If F is an RCF then its residue field k can be embedded in F ,
and F admits a cross-section.

Thus we may assume that k(G ) ⊆ F .

Besides, there exists a truncation closed embedding
F ↪→ k((G )) over k(G ) (G is the value group of F ).

Thus the following can be deduced directly from Proposition 1.

Theorem

Let F be an RCF with the residue field R and a value group G .
Let G have an anti-well-ordered value set α? with α ≤ ω1. Then F
has a normal IP, and the number of elementary non-equivalent IP’s
of F is continuum.



Remarks

1) The field F = R((G )) (where G has a value set
anti-well-ordered) satisfies the conditions of Proposition 1.

Thus R((G )) has continuumly many IP’s (at least one of
them is normal).

2) Let F = k(t)r (with t � 1) be the field mentioned in the
Introduction (k ⊆ R, trdeg(k) = ℵ0).

Then the field extension k ⊆ F ⊆tr k((Q)) satisfies the
hypotheses of Proposition 1.

Given k0 ⊆ k and trdeg(k/k0) = ℵ0 one gets an IP M of F
such that TH∃,h(M) ≡ TH∃,h(k0).

By letting k0 = Q({21/p|p ∈ A}), we get continuumly many
elementary non-equivalent IP’s of F . The case A = ∅
corresponds to the normal one.
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