Sonia L'Innocente

Model Theory and Quantum Groups

Sonia L'Innocente

Department of Mathematics University of Camerino Italy Institute of Mathematics University of Mons-Hainaut Belgium

Logic Seminar University of Mons-Hainaut

01 February 2008, Mons, Belgium

-

Sonia L'Innocente

Seminar's aim

We want to illustrate the main results of a joint work with Ivo Herzog:

The nonstandard quantum plane, submitted.

This work is inspired by Ivo Herzog's paper:

The pseudo-finite dimensional representations of sl(2, *k*). Selecta Mathematica *7* (2001), 241-290

Sonia L'Innocente

Seminar's aim

We want to illustrate the main results of a joint work with Ivo Herzog:

The nonstandard quantum plane, submitted.

This work is inspired by Ivo Herzog's paper:

The pseudo-finite dimensional representations of sl(2, k). Selecta Mathematica 7 (2001), 241-290

Outline

Model Theory and Quantum Groups

Sonia L'Innocente

The nonstandard quantum plane Quantum groups Model Theory of modules

Our strategy

References

Papers Books

1 The nonstandard quantum plane

Quantum groups Model Theory of modules

Our strategy

8 References

Outline

Model Theory and Quantum Groups

Sonia L'Innocente

The nonstandard quantum plane Quantum groups Model Theory of modules

Our strategy

References

Papers Books

1 The nonstandard quantum plane

Quantum groups Model Theory of modules

2 Our strategy

3 References

э

Sonia L'Innocente

The nonstandard quantum plane

Quantum groups

Model Theory of modules

Our strategy

References

Papers Books

Our context: Quantum plane

Let *k* be an algebraically closed field of characteristic 0.

Let q be a parameter in k such that q is **not a root of unity**. Consider the **quantum plane**

- associated to the field k and denoted by k_q[x, y],
- defined to be the free k-algebra k{x, y} generated by x and y, modulo the relation

$$yx = qxy$$
.

< ロ > < 同 > < 回 > < 回 > .

Sonia L'Innocente

The nonstandard quantum plane

Quantum groups

Model Theory of modules

Our strategy

References

Papers Books The set of monomials $\{x^i y^j\}_{i,j\geq 0}$ is a basis for the underlying *k*-vector space, and $\forall (i, j)$ of nonnegative integers, we have

$$y^j x^i = q^{ij} x^i y^j.$$

There is a natural action on the quantum plane by the **quantum group** U_q , that is the quantized universal enveloping algebra.

Sonia L'Innocente

The nonstandard quantum plane

Quantum groups

Model Theory of modules

Our strategy

References

Papers Books The set of monomials $\{x^i y^j\}_{i,j\geq 0}$ is a basis for the underlying *k*-vector space, and $\forall (i, j)$ of nonnegative integers, we have

$$y^j x^i = q^{ij} x^i y^j.$$

There is a natural action on the quantum plane by the **quantum group** U_q , that is the quantized universal enveloping algebra.

> Sonia L'Innocente

The nonstandard quantum plane

Quantum groups

Model Theory of modules

Our strategy

References

Papers Books

Quantized universal enveloping algebra

 U_q is defined as the *k*-algebra generated by the four variables *E*, *F*, *K*, K^{-1} with the relations:

$$\begin{array}{rcl} {\cal K}{\cal K}^{-1} &=& {\cal K}^{-1}{\cal K} = 1 \ , \\ {\cal K}{\cal E}{\cal K}^{-1} = q^2 {\cal E} \ , & {\cal K}{\cal F}{\cal K}^{-1} = q^{-2}{\cal F} \ , \\ {\cal E}{\cal F} - {\cal F}{\cal E} &=& \displaystyle \frac{{\cal K} - {\cal K}^{-1}}{q-q^{-1}} \ . \end{array}$$

The quantum plane as U_q -module

 $k_q[x, y]$ acquires the structure of a left U_q -module where the action of the generators is given by

$$Kx^{i}y^{j} = q^{i-j}x^{i}y^{j}, \quad Ex^{i}y^{j} = [i]x^{i-1}y^{j+1}, \quad Fx^{i}y^{j} = [j]x^{i+1}y^{j-1}$$
(1)

and extended linearly; the coefficients are given by

$$[a] := rac{q^a - q^{-a}}{q - q^{-1}}.$$

Sonia L'Innocente

The nonstandard quantum plane

Quantum groups

Model Theory of modules

Our strategy

References

Papers Books

Our aim

We want to generalize Herzog's paper to the framework of U_q .

So, our work is devoted to the model-theoretic study of the quantum plane, regarded as a U_q -module.

The main result

In the language of left U_q -modules, the ring of definable scalars of the quantum plane is a von Neumann regular epimorphic ring extension of the quantum group U_q .

< ロ > < 同 > < 回 > < 回 > .

Sonia L'Innocente

The nonstandard quantum plane

Quantum groups

Model Theory of modules

Our strategy

References

Papers Books

Some Properties of Uq

- U_q is a noetherian domain,
- By the Poincaré-Birkhoff-Witt Theorem the set {EⁱK^lF^j}_{i,j∈ℕ,l∈ℤ} is a basis of U_q.
- The action of U_q preserves the total degree i + j of the monomial cxⁱy^j, c ∈ k, so k_q[x, y] decomposes as a U_q-module into a direct sum

$$k_q[x,y] = \bigoplus_{n\geq 0} k_q[x,y]_n,$$

where $k_q[x, y]_n$ denotes the *k*-vector space of all homogenous elements in the quantum plane of degree *n*.

Sonia L'Innocente

The nonstandard quantum plane

Quantum groups

Model Theory of modules

Our strategy

References

Papers Books

Finite dim. representations of U_q

Every finite dim. representation of U_q admits a decomposition as a direct sum of simple modules, and $\forall n \in \mathbb{N}$ there exist (up to isomorphism) exactly two simple representations of dimension n + 1, denoted

 $V_{+,n}$ and $V_{-,n}$.

< ロ > < 同 > < 回 > < 回 > .

Sonia L'Innocente

The nonstandard quantum plane

Quantum groups

Model Theory of modules

Our strategy

References

Papers Books

Finite dim. representations of U_q

The simple U_q -modules

 $V_{+,n}$ with a basis $m_0 \ldots, m_n$

 $V_{-,n}$ with a basis $m'_0 \ldots, m'_n$

satisfy $\forall i \ (0 \le i \le n)$ respectively the following relations:

$$\begin{array}{ll}
\mathsf{K}m_{i} = q^{n-2i}m_{i}, & \mathsf{K}m_{i}' = -q^{n-2i}m_{i}', \\
\mathsf{F}m_{i} = \left\{\begin{array}{ll}m_{i+1}, & \text{if } i < n, \\ 0, & \text{if } i = n, \end{array}\right. & \mathsf{F}m_{i}' = \left\{\begin{array}{ll}m_{i+1}', & \text{if } i < n, \\ 0, & \text{if } i = n, \end{array}\right. \\
\mathsf{E}m_{i} = \left\{\begin{array}{ll}[i][n-i+1]m_{i-1}, \\ & \text{if } i > 0 \\ 0, & \text{if } i = 0, \end{array}\right. & \mathsf{E}m_{i}' = \left\{\begin{array}{ll}-[i][n-i+1]m_{i-1}' \\ & \text{if } i > 0 \\ 0, & \text{if } i = 0, \end{array}\right.$$

< ロ > < 同 > < 回 > < 回 > .

Sonia L'Innocente

The nonstandard quantum plane

Quantum groups

Model Theory of modules

Our strategy

References

Papers Books

Finite dim. representations of U_q

The simple U_q -modules

 $V_{+,n}$ with a basis $m_0 \ldots, m_n$

 $V_{-,n}$ with a basis $m'_0 \ldots, m'_n$

satisfy $\forall i \ (0 \le i \le n)$ respectively the following relations:

$$\begin{split} & Km_{i} = q^{n-2i}m_{i}, & Km'_{i} = -q^{n-2i}m'_{i}, \\ & Fm_{i} = \begin{cases} m_{i+1}, & \text{if } i < n, \\ 0, & \text{if } i = n, \end{cases} & Fm'_{i} = \begin{cases} m'_{i+1}, & \text{if } i < n, \\ 0, & \text{if } i = n, \end{cases} \\ & Em_{i} = \begin{cases} [i][n-i+1]m_{i-1}, \\ & \text{if } i > 0 \\ 0, & \text{if } i = 0, \end{cases} & Em'_{i} = \begin{cases} -[i][n-i+1]m'_{i-1} \\ & \text{if } i > 0 \\ 0, & \text{if } i = 0, \end{cases} \end{split}$$

Sonia L'Innocente

The nonstandard quantum plane

Quantum groups

Model Theory of modules

Our strategy

References

Papers Books It is well known that:

- **1** The simple module $V_{+,n}$ is isomorphic to $k_q[x, y]_n$.
- 2 The other simple module $V_{-,n}$ of dim. n + 1 is obtained by composing the action of U_q on $V_{+,n}$ with the automorphism σ of U_q determined by

$$\sigma(E) = -E, \quad \sigma(F) = F, \quad \sigma(K) = -K.$$

We will also refer to the module $V_{-,n}$ as $k_q^{\sigma}[x, y]_n$; and to $k_q^{\sigma}[x, y]$ as the direct sum of one copy of each $k_q^{\sigma}[x, y]_n$, $n \ge 0$.

Sonia L'Innocente

The nonstandard quantum plane

Quantum groups

Model Theory of modules

Our strategy

References

Papers Books It is well known that:

- **1** The simple module $V_{+,n}$ is isomorphic to $k_q[x, y]_n$.
- 2 The other simple module $V_{-,n}$ of dim. n + 1 is obtained by composing the action of U_q on $V_{+,n}$ with the automorphism σ of U_q determined by

$$\sigma(E) = -E, \quad \sigma(F) = F, \quad \sigma(K) = -K.$$

We will also refer to the module $V_{-,n}$ as $k_q^{\sigma}[x, y]_n$; and to $k_q^{\sigma}[x, y]$ as the direct sum of one copy of each $k_q^{\sigma}[x, y]_n$, $n \ge 0$.

Sonia L'Innocente

The nonstandard quantum plane

Quantum groups Model Theory of modules

Our strategy

References

Papers Books

The general strategy

We focus on the module *M* defined as follows:

 $M = k_q[x, y] \oplus k_q^{\sigma}[x, y],$

obtained by taking the direct sum of one copy of each simple representation of U_q , up to isomorphism.

Main Theorem

The lattice Latt(*M*) of pp-definable subspaces of *M* is complemented.

Corollary

Let U'_q be the ring of definable scalars of the U_q -module M. Then, U'_q is von Neumann regular ring.

Sonia L'Innocente

The nonstandard quantum plane

Quantum groups Model Theory of modules

Our strategy

References

Papers Books

The general strategy

We focus on the module *M* defined as follows:

 $M = k_q[x, y] \oplus k_q^{\sigma}[x, y],$

obtained by taking the direct sum of one copy of each simple representation of U_q , up to isomorphism.

Main Theorem

The lattice Latt(M) of pp-definable subspaces of M is complemented.

Corollary

Let U'_q be the ring of definable scalars of the U_q -module M. Then, U'_q is von Neumann regular ring.

Sonia L'Innocente

The nonstandard quantum plane

Quantum groups Model Theory of modules

Our strategy

References

Papers Books

The general strategy

We focus on the module *M* defined as follows:

 $M = k_q[x, y] \oplus k_q^{\sigma}[x, y],$

obtained by taking the direct sum of one copy of each simple representation of U_q , up to isomorphism.

Main Theorem

The lattice Latt(M) of pp-definable subspaces of M is complemented.

Corollary

Let U'_q be the ring of definable scalars of the U_q -module M. Then, U'_q is von Neumann regular ring.

Sonia L'Innocente

The nonstandard quantum plane Quantum groups

Model Theory of modules

Our strategy

References

Papers Books

Model theory of modules: the language $\mathcal{L}(U_q)$

(Left) modules over U_q are viewed as structures of the language

$$\mathcal{L}(U_q) = \{0, +, r(r \in U_q)\}$$

The basic atomic formulas are the linear equations

 $r_1u_1+\ldots+r_nu_n\doteq 0$

with scalars from U_q acting on the left.
The system of linear equations are denoted by

$$(A,B)\begin{pmatrix}\mathbf{u}\\\mathbf{v}\end{pmatrix}\doteq\mathbf{0},$$

where $\mathbf{u} = (u_1, \dots, u_n)$, $\mathbf{v} = (v_1, \dots, v_k)$, *A* denotes an $m \times n$ matrix and *B* an $m \times k$ matrix with entries from U_q . • PP- ("positive primitive") formulae have the shape

$$\varphi(\mathbf{u}) = \exists \mathbf{v} \ (A, B) \begin{pmatrix} \mathbf{u} \\ \mathbf{v} \end{pmatrix} \doteq \mathbf{0}$$

> Sonia L'Innocente

The nonstandard quantum plane Quantum groups Model Theory of

modules Our strategy

References

Papers Books Model theory of modules: the language $\mathcal{L}(U_q)$

(Left) modules over U_q are viewed as structures of the language

$$\mathcal{L}(U_q) = \{0, +, r(r \in U_q)\}$$

The basic atomic formulas are the linear equations

$$r_1u_1+\ldots+r_nu_n\doteq 0$$

with scalars from U_q acting on the left.
The system of linear equations are denoted by

$$(A,B)\begin{pmatrix}\mathbf{u}\\\mathbf{v}\end{pmatrix}\doteq\mathbf{0},$$

where $\mathbf{u} = (u_1, \dots, u_n)$, $\mathbf{v} = (v_1, \dots, v_k)$, *A* denotes an $m \times n$ matrix and *B* an $m \times k$ matrix with entries from U_q . • PP- ("positive primitive") formulae have the shape

$$\varphi(\mathbf{u}) = \exists \mathbf{v} \ (A, B) \left(egin{array}{c} \mathbf{u} \\ \mathbf{v} \end{array}
ight) \doteq \mathbf{0}$$

-

> Sonia L'Innocente

The nonstandard quantum plane Quantum groups

Model Theory of modules

_ .

Papers Books

Model theory of modules: the language $\mathcal{L}(U_q)$

(Left) modules over U_q are viewed as structures of the language

$$\mathcal{L}(U_q) = \{0, +, r(r \in U_q)\}$$

• The basic atomic formulas are the linear equations

$$r_1u_1+\ldots+r_nu_n\doteq 0$$

with scalars from U_q acting on the left.

The system of linear equations are denoted by

$$(\boldsymbol{A},\boldsymbol{B})\begin{pmatrix} \boldsymbol{\mathsf{u}}\\ \boldsymbol{\mathsf{v}}\end{pmatrix}\doteq \mathbf{0},$$

where $\mathbf{u} = (u_1, \dots, u_n)$, $\mathbf{v} = (v_1, \dots, v_k)$, *A* denotes an $m \times n$ matrix and *B* an $m \times k$ matrix with entries from U_q .

$$\varphi(\mathbf{u}) = \exists \mathbf{v} \ (A, B) \begin{pmatrix} \mathbf{u} \\ \mathbf{v} \end{pmatrix} \doteq \mathbf{0}$$

-

イロト イポト イヨト イヨト

> Sonia L'Innocente

The nonstandard quantum plane Quantum groups

Model Theory of modules

Our strategy

References

Papers Books

Model theory of modules: the language $\mathcal{L}(U_q)$

(Left) modules over U_q are viewed as structures of the language

$$\mathcal{L}(U_q) = \{0, +, r(r \in U_q)\}$$

• The basic atomic formulas are the linear equations

$$r_1u_1+\ldots+r_nu_n\doteq 0$$

with scalars from U_q acting on the left.

• The system of linear equations are denoted by

$$(A,B)\begin{pmatrix}\mathbf{u}\\\mathbf{v}\end{pmatrix}\doteq\mathbf{0},$$

where $\mathbf{u} = (u_1, \dots, u_n)$, $\mathbf{v} = (v_1, \dots, v_k)$, *A* denotes an $m \times n$ matrix and *B* an $m \times k$ matrix with entries from U_q . • PP- ("positive primitive") formulae have the shape

$$\varphi(\mathbf{u}) = \exists \mathbf{v} \ (\mathbf{A}, \mathbf{B}) \left(egin{array}{c} \mathbf{u} \\ \mathbf{v} \end{array}
ight) \doteq \mathbf{0}$$

Sonia L'Innocente

The nonstandard quantum plane Quantum groups

Model Theory of modules

Our strategy

References

Papers Books

PP-definable subspace

Recall that If *V* is a U_q -module, the set of the solutions in *V* to the formula $\varphi(\mathbf{v})$ is a *k*-subspace of V^n .

 $\varphi(v)$ is a pp-formula in one free variable v, then

 $\varphi(V) = \{ u \in V : V \models \varphi(u) \}$

denotes pp-definable subspace of V.

The collection of pp-definable subspaces of *V* has the structure of a modular lattice (with respect to *subseteq*).

Sonia L'Innocente

The nonstandard quantum plane Quantum groups

Model Theory of modules

Our strategy

```
References
```

Papers Books

PP-definable subspace

Recall that If *V* is a U_q -module, the set of the solutions in *V* to the formula $\varphi(\mathbf{v})$ is a *k*-subspace of V^n .

If $\varphi(v)$ is a pp-formula in one free variable v, then

 $\varphi(V) = \{ u \in V : V \models \varphi(u) \}$

denotes pp-definable subspace of V.

The collection of pp-definable subspaces of *V* has the structure of a modular lattice (with respect to *subseteq*).

-

Sonia L'Innocente

The nonstandard quantum plane Quantum groups Model Theory of

modules

Our strategy

```
References
```

Papers Books

PP-definable subspace

Recall that If *V* is a U_q -module, the set of the solutions in *V* to the formula $\varphi(\mathbf{v})$ is a *k*-subspace of V^n .

If $\varphi(v)$ is a pp-formula in one free variable v, then

 $\varphi(V) = \{ u \in V : V \models \varphi(u) \}$

denotes pp-definable subspace of V.

The collection of pp-definable subspaces of V has the structure of a modular lattice (with respect to *subseteq*).

-

> Sonia L'Innocente

The nonstandard quantum plane

Model Theory of modules

Our strategy

Papers Books

The ring of definable scalars

Let V be a representation of U_q .

A *definable scalar* of V is a k-linear transformation

 $\rho_V: V \to V$, whose graph is definable in *V* by a pp-formula $\rho(u_1, u_2)$ in two variables,

 $V \models \forall u_1 \exists ! u_2 \rho(u_1, u_2).$

The collection of definable scalars of V has the structure of a ring, denoted by U_V .

There is a canonical morphism from the ring U_q to U_V , which sends the element *r* to its action on *V*, defined by the pp-formula

$$u_2 = r u_1$$
.

An important result

If the lattice of pp-definable subspaces of the U_q -module V is complemented, then the ring U_V is von Neumann regular and that the canonical map $U_q \rightarrow U_V$ is an epimorphism.

> Sonia L'Innocente

The nonstandard quantum plane

Model Theory of

Our strategy

Papers Papeks

The ring of definable scalars

Let V be a representation of U_q .

A *definable scalar* of V is a k-linear transformation

 $\rho_V: V \to V$, whose graph is definable in *V* by a pp-formula $\rho(u_1, u_2)$ in two variables,

 $V \models \forall u_1 \exists ! u_2 \rho(u_1, u_2).$

The collection of definable scalars of V has the structure of a ring, denoted by U_V .

There is a canonical morphism from the ring U_q to U_V , which sends the element *r* to its action on *V*, defined by the pp-formula

$$u_2 = ru_1$$
.

An important result

If the lattice of pp-definable subspaces of the U_q -module V is complemented, then the ring U_V is von Neumann regular and that the canonical map $U_q \rightarrow U_V$ is an epimorphism.

> Sonia L'Innocente

The nonstandard quantum plane

Model Theory of modules

Our strategy

Papers Books

The ring of definable scalars

Let V be a representation of U_q .

A *definable scalar* of V is a k-linear transformation

 $\rho_V: V \to V$, whose graph is definable in *V* by a pp-formula $\rho(u_1, u_2)$ in two variables,

 $V \models \forall u_1 \exists ! u_2 \rho(u_1, u_2).$

The collection of definable scalars of V has the structure of a ring, denoted by U_V .

There is a canonical morphism from the ring U_q to U_V , which sends the element *r* to its action on *V*, defined by the pp-formula

$$u_2 = ru_1$$
.

An important result

If the lattice of pp-definable subspaces of the U_q -module V is complemented, then the ring U_V is von Neumann regular and that the canonical map $U_q \rightarrow U_V$ is an epimorphism.

Sonia L'Innocente

The nonstandard quantum plane

Model Theory of modules

Our strategy

References

Papers Books

The Ziegler Spectrum

Let *R* be a ring. The (left) Ziegler spectrum of a ring *R*, usually denoted Zg(R), is the topological space

whose points are the isomorphism classes of (left) indecomposable p. i. modules

If *N* is a left *R*-module, then the closed subset of *N* in Zg(R) is defined to be

$$\mathcal{C}\ell(N):=igcap_{N\modelsarphi
ightarrow\psi}(\mathcal{O}_{arphi,\,\psi})^c.$$

< ロ > < 同 > < 回 > < 回 >

> Sonia L'Innocente

The nonstandard quantum plane

Model Theory of modules

Our strategy

References

Papers Books

The Ziegler Spectrum

Let *R* be a ring. The (left) Ziegler spectrum of a ring *R*, usually denoted Zg(R), is the topological space

whose topology admits as a basis of open neighbourhoods the sets:

$$\mathcal{O}_{arphi,\psi} = \{ U \in \mathsf{Zg}(R) : U \models \exists v (\varphi(v) \land \neg \psi(v)) \}$$

indexed by ordered pairs $\varphi(\mathbf{v})$, $\psi(\mathbf{v})$ of pp-formulas in one variable.

If N is a left R-module, then the closed subset of N in Zg(R) is defined to be

$$\mathcal{C}\ell(\pmb{N}):=igcap_{\pmb{N}\modelsarphi
ightarrow\psi}(\mathcal{O}_{arphi,\,\psi})^{\pmb{c}}.$$

< ロ > < 同 > < 三 > < 三 >

Sonia L'Innocente

The nonstandard quantum plane Quantum groups Model Theory of modules

Our strategy

References

Papers Books

The nonstandard quantum plane Quantum groups

Model Theory of modules

Our strategy

3 References

э

Outline

Sonia L'Innocente

The nonstandard quantum plane Quantum groups Model Theory of modules

Our strategy

References

Papers Books

The duality

For every pp-formula $\varphi(\mathbf{u})$ in $\mathcal{L}(U_q)$ we can associate the dual pp-formula in the language $\mathcal{L}(U_q^{opp})$

$$\varphi^*(\mathbf{u}) = \exists \mathbf{w} (\mathbf{u}, \mathbf{w}) \begin{pmatrix} I_n & 0 \\ A & B \end{pmatrix} \doteq 0,$$

where I_n denotes the $n \times n$ identity matrix.

If *V* is a left U_q -module, then the space $V^* := \text{Hom}_k(V, k)$ of functionals is a right U_q -module, given by $(\eta r)(v) = \eta(rv)$, for every $r \in U_q$.

Sonia L'Innocente

The nonstandard quantum plane Quantum groups Model Theory of modules

Our strategy

References

Papers Books

The duality

For every pp-formula $\varphi(\mathbf{u})$ in $\mathcal{L}(U_q)$ we can associate the dual pp-formula in the language $\mathcal{L}(U_q^{opp})$

$$\varphi^*(\mathbf{u}) = \exists \mathbf{w} (\mathbf{u}, \mathbf{w}) \begin{pmatrix} I_n & 0 \\ A & B \end{pmatrix} \doteq 0,$$

where I_n denotes the $n \times n$ identity matrix.

If *V* is a left U_q -module, then the space $V^* := \text{Hom}_k(V, k)$ of functionals is a right U_q -module, given by $(\eta r)(v) = \eta(rv)$, for every $r \in U_q$.

Sonia L'Innocente

The nonstandard quantum plane Quantum groups Model Theory of modules

Our strategy

References

Papers Books

If $\varphi(V)$ is a pp-def. subspace of V, then $\varphi^*(V^*)$ is the subspace of V^* consisting of functionals that vanish on $\varphi(V)$.

This association yields an anti-isomorphism of the lattice of pp-definable subspaces of V and that of V^* .

イロン イボン イヨン イヨン

Sonia L'Innocente

The nonstandard quantum plane Quantum groups Model Theory of modules

Our strategy

References

Papers Books If $\varphi(V)$ is a pp-def. subspace of V, then $\varphi^*(V^*)$ is the subspace of V^* consisting of functionals that vanish on $\varphi(V)$.

This association yields an anti-isomorphism of the lattice of pp-definable subspaces of V and that of V^* .

э

Sonia L'Innocente

The nonstandard quantum plane Quantum groups Model Theory of modules

Our strategy

References

Papers Books

The duality

Let us consider the anti-automorphism Tr of U_q determined by the values

$$\Xi \mapsto F, \ F \mapsto E, \ K \mapsto K.$$

The key operation on pp-formulae is the composition of the operation

 $arphi\mapsto arphi^*$ with $arphi\mapsto {\sf Tr}(arphi).$

denoted by

Sonia L'Innocente (University of Mons) Model Theory and Quantum Groups

э

Sonia L'Innocente

The nonstandard quantum plane Quantum groups

Model Theory of modules

Our strategy

References

Papers Books

The duality

Let us consider the anti-automorphism Tr of U_q determined by the values

$$E \mapsto F, F \mapsto E, K \mapsto K.$$

The key operation on pp-formulae is the composition of the operation

$$\varphi \mapsto \varphi^*$$
 with $\varphi \mapsto \mathsf{Tr}(\varphi).$

denoted by

 $\varphi \mapsto \varphi^-$.

(a)

Sonia L'Innocente

The nonstandard quantum plane Quantum groups Model Theory of modules

Our strategy

References

Papers Books

Lemma

For every finite dimensional simple representation $V_{\epsilon,n}$, we have that

$$V_{\epsilon,n}^* \cong V_{\epsilon,n}^{\mathrm{Tr}}.$$

э

Sonia L'Innocente

The nonstandard quantum plane Quantum groups Model Theory of

modules

Our strategy

References

Papers Books

Proof

It is enough to prove hat the quantized Casimir element of U_a

$$C_q = EF + rac{q^{-1}K + K^{-1}q^{-1}}{(q-q^{-1})^2}.$$

acts by the same scalar on $V_{\epsilon,n}^*$ as it does on $V_{\epsilon,n}^{\text{Tr}}$. For every $v \in V_{\epsilon,n}$, $(\eta C_q)(v) = \eta(C_q v) = \eta(C_{\epsilon,n}v) = (\eta C_{\epsilon,n})(v)$, and therefore $\eta C_q = \eta C_{\epsilon,n}$ for every $\eta \in V_{\epsilon,n}^*$.

On the other hand, we have that

 $vC_q = \operatorname{Tr}(C_q)v = C_qv = C_{\epsilon,n}v = \operatorname{Tr}(C_{\epsilon,n})v = vC_{\epsilon,n},$

for every $v \in V_{\epsilon,n}^{\mathrm{Tr}}$;

Proof

Sonia L'Innocente

The nonstandard quantum plane Quantum groups Model Theory of modules

Our strategy

References

Papers Books

It is enough to prove hat the quantized Casimir element of U_{α}

$$C_q = EF + rac{q^{-1}K + K^{-1}q^{-1}}{(q-q^{-1})^2}$$

acts by the same scalar on $V_{\epsilon,n}^*$ as it does on $V_{\epsilon,n}^{Tr}$. For every $v \in V_{\epsilon,n}$,

$$(\eta C_q)(\mathbf{v}) = \eta(C_q \mathbf{v}) = \eta(C_{\epsilon,n} \mathbf{v}) = (\eta C_{\epsilon,n})(\mathbf{v}),$$

and therefore $\eta C_q = \eta C_{\epsilon,n}$ for every $\eta \in V_{\epsilon,n}^*$.

On the other hand, we have that

 $vC_q = \operatorname{Tr}(C_q)v = C_qv = C_{\epsilon,n}v = \operatorname{Tr}(C_{\epsilon,n})v = vC_{\epsilon,n}v$

for every $v \in V_{\epsilon,n}^{\mathrm{Tr}}$;

Proof

Sonia L'Innocente

The nonstandard quantum plane Quantum groups Model Theory of modules

Our strategy

References

Papers Books

It is enough to prove hat the quantized Casimir element of U_a

$$C_q = EF + rac{q^{-1}K + K^{-1}q^{-1}}{(q-q^{-1})^2}$$

acts by the same scalar on $V_{\epsilon,n}^*$ as it does on $V_{\epsilon,n}^{Tr}$. For every $v \in V_{\epsilon,n}$,

$$(\eta C_q)(\mathbf{v}) = \eta(C_q \mathbf{v}) = \eta(C_{\epsilon,n} \mathbf{v}) = (\eta C_{\epsilon,n})(\mathbf{v}),$$

and therefore $\eta C_q = \eta C_{\epsilon,n}$ for every $\eta \in V_{\epsilon,n}^*$.

On the other hand, we have that

$$vC_q = \operatorname{Tr}(C_q)v = C_qv = C_{\epsilon,n}v = \operatorname{Tr}(C_{\epsilon,n})v = vC_{\epsilon,n},$$

for every $v \in V_{\epsilon,n}^{\mathrm{Tr}}$;

Sonia L'Innocente

The nonstandard quantum plane Quantum groups Model Theory of modules

Our strategy

References

Papers Books Recall that $C_{\epsilon,n}$ denotes the scalar multiplication on $V_{\epsilon,n}$

$$C_{\epsilon,n}=rac{q^{-1}(\epsilon q^n)+q(\epsilon q^n)^{-1}}{(q-q^{-1})^2}.$$

Proposition

The rule $\varphi(M) \rightarrow \varphi^{-}(M)$ is an anti-isomorphism of the lattice Latt(*M*) of pp-definable subspaces of *M*.

Proof. Focus on
$$V_{\epsilon,n}$$
. If $V \models \varphi(v) \rightarrow \psi$, then

$$V_{\epsilon,n}^{\mathrm{Tr}} = V_{\epsilon,n}^* \models \psi^*(v) \to \varphi^*(v),$$

which is equivalent to

$$V_{\epsilon,n} \models \psi^-(v) \rightarrow \varphi^-(v).$$

Sonia L'Innocente

The nonstandard quantum plane Quantum groups Model Theory of modules

Our strategy

References

Papers Books Recall that $C_{\epsilon,n}$ denotes the scalar multiplication on $V_{\epsilon,n}$

$$C_{\epsilon,n}=rac{q^{-1}(\epsilon q^n)+q(\epsilon q^n)^{-1}}{(q-q^{-1})^2}.$$

Proposition

The rule $\varphi(M) \rightarrow \varphi^{-}(M)$ is an anti-isomorphism of the lattice Latt(*M*) of pp-definable subspaces of *M*.

Proof. Focus on
$$V_{\epsilon,n}$$
. If $V \models \varphi(v) \rightarrow \psi$, then

$$V_{\epsilon,n}^{\mathrm{Tr}} = V_{\epsilon,n}^* \models \psi^*(\mathbf{v}) \to \varphi^*(\mathbf{v}),$$

which is equivalent to

$$V_{\epsilon,n} \models \psi^-(v) \rightarrow \varphi^-(v).$$

Sonia L'Innocente

The nonstandard quantum plane Quantum groups Model Theory of modules

Our strategy

References

Papers Books Recall that $C_{\epsilon,n}$ denotes the scalar multiplication on $V_{\epsilon,n}$

$$C_{\epsilon,n}=rac{q^{-1}(\epsilon q^n)+q(\epsilon q^n)^{-1}}{(q-q^{-1})^2}.$$

Proposition

The rule $\varphi(M) \rightarrow \varphi^{-}(M)$ is an anti-isomorphism of the lattice Latt(*M*) of pp-definable subspaces of *M*.

Proof. Focus on
$$V_{\epsilon,n}$$
. If $V \models \varphi(v) \rightarrow \psi$, then

$$V_{\epsilon,n}^{\mathrm{Tr}} = V_{\epsilon,n}^* \models \psi^*(\mathbf{v}) \to \varphi^*(\mathbf{v}),$$

which is equivalent to

$$V_{\epsilon,n} \models \psi^-(v) \rightarrow \varphi^-(v).$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Sonia L'Innocente

The nonstandard quantum plane Quantum groups Model Theory of modules

Our strategy

References

Papers Books

Proposition

If φ is a *K*-invariant pp-formula, then φ^- is also *K*-invariant and for every simple finite dimensional representation $V_{\epsilon,n}$,

$$\varphi(V_{\epsilon,n})\oplus \varphi^-(V_{\epsilon,n})=V_{\epsilon,n}.$$

Theorem

If *s* in U_q is nonzero, and $\varphi(v)$ is the annihilator formula $sv \doteq 0$, then there is a uniformly cobounded formula $\psi(v)$ such that the pp-definable subspace $\psi(M)$ is *K*-invariant, and

 $\varphi(M)\cap\psi(M)=\mathsf{0}.$

Proposition

If $\varphi(v)$ is a low pp-formula for which the pp-def. subspace $\varphi(M)$ is *K*-invariant, then the interval $[0, \varphi(M)]$ of the lattice Latt(*M*) is complemented.

> Sonia L'Innocente

The nonstandard quantum plane Quantum groups

Model Theory of modules

Our strategy

References

Papers Books

Proposition

If φ is a *K*-invariant pp-formula, then φ^- is also *K*-invariant and for every simple finite dimensional representation $V_{\epsilon,n}$,

$$\varphi(V_{\epsilon,n})\oplus \varphi^-(V_{\epsilon,n})=V_{\epsilon,n}.$$

Theorem

If *s* in U_q is nonzero, and $\varphi(v)$ is the annihilator formula $sv \doteq 0$, then there is a uniformly cobounded formula $\psi(v)$ such that the pp-definable subspace $\psi(M)$ is *K*-invariant, and

$$\varphi(M) \cap \psi(M) = 0.$$

Proposition

If $\varphi(v)$ is a low pp-formula for which the pp-def. subspace $\varphi(M)$ is *K*-invariant, then the interval $[0, \varphi(M)]$ of the lattice Latt(*M*) is complemented.

> Sonia L'Innocente

The nonstandard quantum plane Quantum groups

Model Theory of modules

Our strategy

References

Papers Books

Proposition

If φ is a *K*-invariant pp-formula, then φ^- is also *K*-invariant and for every simple finite dimensional representation $V_{\epsilon,n}$,

$$\varphi(V_{\epsilon,n})\oplus \varphi^{-}(V_{\epsilon,n})=V_{\epsilon,n}.$$

Theorem

If *s* in U_q is nonzero, and $\varphi(v)$ is the annihilator formula $sv \doteq 0$, then there is a uniformly cobounded formula $\psi(v)$ such that the pp-definable subspace $\psi(M)$ is *K*-invariant, and

$$\varphi(M) \cap \psi(M) = 0.$$

Proposition

If $\varphi(v)$ is a low pp-formula for which the pp-def. subspace $\varphi(M)$ is *K*-invariant, then the interval $[0, \varphi(M)]$ of the lattice Latt(*M*) is complemented.

Sonia L'Innocente

The nonstandard quantum plane Quantum groups Model Theory of modules

Our strategy

References

Papers Books

By the previous results we can complete the proof of our main theorem.

f $\varphi(M)$ is defined by a high formula, then $\varphi^-(v)$ is low, so we obtain a high formula $\psi(v)$ such that $\psi(M)$ is K-invariant and

 $\varphi^-(M) \cap \psi(M) = 0.$

Applying $arphi\mapsto arphi^-$ once more gives that

$$\varphi(M) + \psi^-(M) = M.$$

Now $\psi^{-}(M)$ is a *K*-invariant subspace defined by a low pp-formula, so that the interval $[0, \psi^{-}(M)]$ is complemented.

A complement of $\varphi(M) \cap \psi^-(M)$ in $\psi^-(M)$ then serves as a complement of $\varphi(M)$ in M.

Sonia L'Innocente

The nonstandard quantum plane Quantum groups Model Theory of modules

Our strategy

References

Papers Books By the previous results we can complete the proof of our main theorem.

If $\varphi(M)$ is defined by a high formula, then $\varphi^-(v)$ is low, so we obtain a high formula $\psi(v)$ such that $\psi(M)$ is *K*-invariant and

 $\varphi^{-}(M) \cap \psi(M) = 0.$

Applying $arphi\mapsto arphi^-$ once more gives that

 $\varphi(M) + \psi^-(M) = M.$

Now $\psi^{-}(M)$ is a *K*-invariant subspace defined by a low pp-formula, so that the interval $[0, \psi^{-}(M)]$ is complemented.

A complement of $\varphi(M) \cap \psi^-(M)$ in $\psi^-(M)$ then serves as a complement of $\varphi(M)$ in M.

-

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

> Sonia L'Innocente

The nonstandard quantum plane Quantum groups Model Theory of modules

Our strategy

References

Papers Books By the previous results we can complete the proof of our main theorem.

If $\varphi(M)$ is defined by a high formula, then $\varphi^-(v)$ is low, so we obtain a high formula $\psi(v)$ such that $\psi(M)$ is *K*-invariant and

$$\varphi^{-}(M) \cap \psi(M) = 0.$$

Applying $\varphi \mapsto \varphi^-$ once more gives that

$$\varphi(\mathbf{M}) + \psi^{-}(\mathbf{M}) = \mathbf{M}.$$

Now $\psi^{-}(M)$ is a *K*-invariant subspace defined by a low pp-formula, so that the interval $[0, \psi^{-}(M)]$ is complemented.

A complement of $\varphi(M) \cap \psi^-(M)$ in $\psi^-(M)$ then serves as a complement of $\varphi(M)$ in M.

э

> Sonia L'Innocente

The nonstandard quantum plane Quantum groups Model Theory of modules

Our strategy

References

Papers Books By the previous results we can complete the proof of our main theorem.

If $\varphi(M)$ is defined by a high formula, then $\varphi^-(v)$ is low, so we obtain a high formula $\psi(v)$ such that $\psi(M)$ is *K*-invariant and

$$\varphi^{-}(M) \cap \psi(M) = 0.$$

Applying $\varphi \mapsto \varphi^-$ once more gives that

$$\varphi(\mathbf{M}) + \psi^{-}(\mathbf{M}) = \mathbf{M}.$$

Now $\psi^{-}(M)$ is a *K*-invariant subspace defined by a low pp-formula, so that the interval $[0, \psi^{-}(M)]$ is complemented.

A complement of $\varphi(M) \cap \psi^{-}(M)$ in $\psi^{-}(M)$ then serves as a complement of $\varphi(M)$ in M.

-

Sonia L'Innocente

The nonstandard quantum plane Quantum groups Model Theory of modules

Our strategy

References

Papers Books

By the previous results we can complete the proof of our main theorem.

the pp-def. subspace $\varphi(M)$ is defined by a low pp-formula, nen:

(1) we obtain a complement $\psi(M)$ of $\varphi^{-}(M)$ in M,

2 we apply the anti-automorphism $\varphi \mapsto \varphi^-$ to see that $\psi^-(M)$ is then a complement of $\varphi(M)$ in M.

Sonia L'Innocente

The nonstandard quantum plane Quantum groups Model Theory of modules

Our strategy

References

Papers Books By the previous results we can complete the proof of our main theorem.

If the pp-def. subspace $\varphi(M)$ is defined by a low pp-formula, then:

1 we obtain a complement $\psi(M)$ of $\varphi^{-}(M)$ in M,

2 we apply the anti-automorphism φ → φ⁻ to see that ψ⁻(M) is then a complement of φ(M) in M.

э

Sonia L'Innocente

The nonstandard quantum plane Quantum groups Model Theory of

modules

Our strategy

References

Papers Books

The ring U'_q

Let U'_q be the ring of definable scalars of the U_q -module M. If $r \in U'_q$, then rM is complemented by some $\psi(M)$, so

$$rM \oplus_k \psi(M) = M.$$

If $e \in U'_q$ is the idempotent projection onto *rM* with respect to this decomposition, then

$$\pmb{M} \models \forall \pmb{v}(\psi(\pmb{v}) \leftrightarrow (\pmb{e} \pmb{v} \doteq \pmb{0})),$$

and $rU'_q = eU'_q$.

Similarly, define $e_0 \in U'_q$ to be the idempotent projection onto the pp-definable subspace $\varphi(M)$ defined by $\varphi(v) = (Ev \doteq 0)$, with respect to the decomposition

$$\varphi(M) \oplus_k FM = M.$$

ヘロン 人間 とくほ とくほう

> Sonia L'Innocente

The nonstandard quantum plane Quantum groups Model Theory of

Our strategy

References

Papers Books

The ring U'_q

Let U'_q be the ring of definable scalars of the U_q -module M. If $r \in U'_q$, then rM is complemented by some $\psi(M)$, so

 $rM \oplus_k \psi(M) = M.$

If $e \in U'_q$ is the idempotent projection onto *rM* with respect to this decomposition, then

$$\pmb{M} \models \forall \pmb{v}(\psi(\pmb{v}) \leftrightarrow (\pmb{e} \pmb{v} \doteq \pmb{0})),$$

and $rU'_q = eU'_q$.

Similarly, define $e_0 \in U'_q$ to be the idempotent projection onto the pp-definable subspace $\varphi(M)$ defined by $\varphi(v) = (Ev \doteq 0)$, with respect to the decomposition

$$\varphi(M)\oplus_k FM=M.$$

ヘロン 人間 とくほ とくほう

Sonia L'Innocente

The nonstandard quantum plane Quantum groups Model Theory of modules

Our strategy

References

Papers Books For every $V_{\epsilon,n}$ of U_q , $e_0 V_{\epsilon,n}$ is the highest weight space. We can state that

1 $I_0 = (e_0)$ consists of all the elements $r \in U'_q$ for which the formula r | v is is uniformly bounded,

2 $U'_q/I_0 \cong Q$, where Q is the field of fractions Q of U_q .

э

Sonia L'Innocente

The nonstandard quantum plane

Model Theory of modules

Our strategy

References

Papers Books

The Ziegler Spectrum of U'_q

 Zg(U'_q) consists of the injective indecomposable U'_q-modules where the open subsets in Zg(U'_q) are in bijective correspondence with the two-sided ideals of U'_q according to the rule

$$U\mapsto \mathcal{O}(I):=\{E\in \mathsf{Zg}(U_q'):\ IE
eq 0\}.$$

$$\operatorname{Zg}(U'_q) = \mathcal{O}(I_0) \stackrel{.}{\cup} \{Q\},$$

where $\mathcal{O}(I_0)$ forms a compact totally disconnected subspace of $Zg(U'_a)$,

 The subset of finite dim. simple representations V_{ε,n} is a dense and discrete open subset of Zg(U'_a).

Sonia L'Innocente

The nonstandard quantum plane Quantum groups

Model Theory of modules

Our strategy

References

Papers Books

Remark

- If V ∈ Zg(U'_q) is not Q, then I₀V ≺ V is a simple U'_q-module which is an elementary substructure of V regardless of whether V is viewed as U_q-module or U'_q-module.
- An indec. representation V in $Zg(U'_q)$ is finite dimensional if and only if $I_0V = V$.

Pseudo-finite dim. U_q-modules

A U_q -module V is said to be *pseudo-finite dim.* if it satisfies all the first order sentences of the language of U_q -modules satisfied by every finite dimensional module.

Sonia L'Innocente

The nonstandard quantum plane Quantum groups

Model Theory of modules

Our strategy

References

Papers Books

Remark

- If V ∈ Zg(U'_q) is not Q, then I₀V ≺ V is a simple U'_q-module which is an elementary substructure of V regardless of whether V is viewed as U_q-module or U'_q-module.
- An indec. representation V in $Zg(U'_q)$ is finite dimensional if and only if $I_0 V = V$.

Pseudo-finite dim. U_q-modules

A U_q -module V is said to be *pseudo-finite dim.* if it satisfies all the first order sentences of the language of U_q -modules satisfied by every finite dimensional module.

Sonia L'Innocente

The nonstandard quantum plane

Model Theory of modules

Our strategy

References

Papers Books

Proposition

A U_q-module V is pseudo-finite if and only if it is a U'_q-module and I₀V ≺ V.

$$V \equiv \bigoplus_{W \in \mathcal{C}\ell(V)} I_0 W,$$

where every $I_0 W$ is a pseudo-finite dimensional simple representation of U'_q .

The latter is an elementary version of the analogous result in the classical case.

Sonia L'Innocente

The nonstandard quantum plane Quantum groups

Model Theory of modules

Our strategy

References

Papers Books

Proposition

A U_q-module V is pseudo-finite if and only if it is a U'_q-module and I₀V ≺ V.

$$V \equiv \bigoplus_{W \in \mathcal{C}\ell(V)} I_0 W,$$

where every $I_0 W$ is a pseudo-finite dimensional simple representation of U'_q .

The latter is an elementary version of the analogous result in the classical case.

Sonia L'Innocente

Model Theory of modules

Books

Let φ_+ be the sum of the pp-formulae:

$$Kv = qv, Kv = v;$$

the pp-definable subspace $\varphi_+(M)$ of M is K-invariant and

$$\varphi_+(M)\oplus_k\varphi_+^-(M)=M.$$

So, define e_+ to be the idempotent projection onto $\varphi_+(M)$. Then $e_+V_{\epsilon,n} \neq 0$ if and only if $\epsilon = +$. Let $I_+ = (e_+)$,.

э

Sonia L'Innocente

Model Theory of modules

Books

Let φ_+ be the sum of the pp-formulae:

$$Kv = qv, Kv = v;$$

the pp-definable subspace $\varphi_+(M)$ of M is K-invariant and

$$\varphi_+(M)\oplus_k \varphi_+^-(M)=M.$$

So, define e_+ to be the idempotent projection onto $\varphi_+(M)$. Then $e_+V_{\epsilon,n} \neq 0$ if and only if $\epsilon = +$. Let $I_+ = (e_+)$,.

э

Sonia L'Innocente

Model Theory of modules

Books

Let φ_+ be the sum of the pp-formulae:

$$Kv = qv, Kv = v;$$

the pp-definable subspace $\varphi_+(M)$ of M is K-invariant and

$$\varphi_+(M)\oplus_k \varphi_+^-(M)=M.$$

So, define e_+ to be the idempotent projection onto $\varphi_+(M)$. Then $e_+V_{\epsilon,n} \neq 0$ if and only if $\epsilon = +$. Let $I_+ = (e_+)$,.

э

Sonia L'Innocente

The nonstandard quantum plane Quantum groups Model Theory of modules

Our strategy

References

Papers Books Similarly, let $\varphi_{-} = \sigma(\varphi_{+})$. It is the sum of the pp-formulae:

$$Kv = -qv, \quad Kv = -v.$$

If we define $e_{-} = \sigma(e_{+})$ to be the idempotent projection onto $\varphi_{-}(M)$, then $e_{-}V_{\epsilon,n} \neq 0$ if and only if $\epsilon = -$.

Then the ideal $I_{-} = (e_{-})$ is $\sigma(I)$.

Since the open subsets associated to I_0 and $I_- + I_+$ both contain all the finite dimensional points of $Zg(U'_q)$, we conclude that

$$I_{-} + I_{+} = I_{0}.$$

э

Sonia L'Innocente

The nonstandard quantum plane Quantum groups Model Theory of modules

Our strategy

References

Papers Books Similarly, let $\varphi_{-} = \sigma(\varphi_{+})$. It is the sum of the pp-formulae:

$$Kv = -qv, \quad Kv = -v.$$

If we define $e_{-} = \sigma(e_{+})$ to be the idempotent projection onto $\varphi_{-}(M)$, then $e_{-}V_{\epsilon,n} \neq 0$ if and only if $\epsilon = -$.

Then the ideal
$$I_{-} = (e_{-})$$
 is $\sigma(I)$.

1

Since the open subsets associated to I_0 and $I_- + I_+$ both contain all the finite dimensional points of $Zg(U'_q)$, we conclude that

$$I_{-} + I_{+} = I_{0}.$$

Sonia L'Innocente

The nonstandard quantum plane Quantum groups Model Theory of modules

Our strategy

References

Papers Books

Theorem

We can state that:

- the lattice of pp-definable subspaces of the quantum plane $k_q[x, y]$ is also complemented.
- The ring of definable scalars of k_q[x, y] may be identified with the von Neumann regular ring U'_a/I₋.

The canonical morphism $\rho: U_q \rightarrow U'_q/I_-$ is an epimorphism of rings with 0 kernel.

< ロ > < 同 > < 回 > < 回 > .

Sonia L'Innocente

The nonstandard quantum plane Quantum groups Model Theory of modules

Our strategy

References

Papers Books

Theorem

We can state that:

- the lattice of pp-definable subspaces of the quantum plane $k_q[x, y]$ is also complemented.
- The ring of definable scalars of k_q[x, y] may be identified with the von Neumann regular ring U'_a/I₋.

The canonical morphism $\rho: U_q \rightarrow U'_q/I_-$ is an epimorphism of rings with 0 kernel.

< ロ > < 同 > < 回 > < 回 > .

Sonia L'Innocente

The nonstandard quantum plane Quantum groups Model Theory of modules

Our strategy

References

Papers Books

Proof

Any *r* of *M* that vanishes on $k_q[x, y]$ must belong to I_0 .

This is because $k_q[x, y]$ contains finite dimensional indecomposable summands of arbitrarily large *k*-dimension. Since I_- consists of the elements of I_0 that vanish on $k_q[x, y]$, our claim is established.

There is a canonical morphism of rings from U'_q to the ring U'_q of definable scalars of $k_q[x, y]$. Since the lattice of pp-def. subspace of $k_q[x, y]$ is complemented, the canonical morphism is an epimorphism of rings.

Sonia L'Innocente

The nonstandard quantum plane Quantum groups Model Theory of modules

Our strategy

References

Papers Books

Proof

Any *r* of *M* that vanishes on $k_q[x, y]$ must belong to I_0 .

This is because $k_q[x, y]$ contains finite dimensional indecomposable summands of arbitrarily large *k*-dimension. Since I_- consists of the elements of I_0 that vanish on $k_q[x, y]$, our claim is established.

There is a canonical morphism of rings from U'_q to the ring U''_q of definable scalars of $k_q[x, y]$. Since the lattice of pp-def. subspace of $k_q[x, y]$ is complemented, the canonical morphism is an epimorphism of rings.

Sonia L'Innocente

The nonstandard quantum plane Quantum groups Model Theory of modules

Our strategy

References

Papers Books

Remark

All but one of the points of the closed set Cl(kq[x, y]) associated to the quantum plane is pseudo finite.

• These points represent the nonstandard homogeneous components of the quantum plane.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Sonia L'Innocente

The nonstandard quantum plane Quantum groups Model Theory of modules

Our strategy

References

Papers Books

1 The nonstandard quantum plane

Model Theory of modules

2 Our strategy

8 References

э

Outline

Sonia L'Innocente

The nonstandard quantum plane

Model Theory of modules

Our strategy

References

Papers Books

I. Herzog.

The pseudo-finite dimensional representations of sl(2, k). Selecta Mathematica 7 (2001), 241-290

I. Herzog and S. L'Innocente. The nonstandard quantum plane. *Submitted.*

S. L'Innocente and A. Macintyre.

Towards Decidability of the Theory of Pseudo-Finite Dimensional Representations of $sl_2(\kappa)$; I, *Fundamenta Mathematicae, to appear.*

S. L'Innocente and M. Prest, Rings of definable scalars of Verma modules. Journal of Algebra and its applications, to appear.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Sonia L'Innocente

The nonstandard quantum plane Quantum groups Model Theory of modules

Our strategy

Papers Books J. Dixmier. *Enveloping Algebras*, North Holland, 1977

K. Erdmann and M. Wildon. Introduction to Lie algebras. Springer, SUMS series, 2006.

 M. Hindry and J. Silverman.
 Diophantine geometry.
 An introduction. Graduate Texts in Mathematics, 201, Springer, 2000

C. Kassel, Quantum Groups. Springer, 1995.

M. Prest. Purity, Spectra and Localisation. In preparation.

・ 同 ト ・ ヨ ト ・ ヨ ト