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Abstract. We study the model-checking problem for weighted timed
automata and the weighted CTL logic by the bisimulation approach.
Weighted timed automata are timed automata extended with costs on
both edges and locations. When the costs act as stopwatches, we get
stopwatch automata with the restriction that the stopwatches cannot
be reset nor tested. The weighted CTL logic is an extension of TCTL
that allow to reset and test the cost variables. Our main results are (i)
the undecidability of the proposed model-checking problem for discrete
and dense time, (i7) its PSPACE-COMPLETENESS in the discrete case for
a slight restriction of the logic, (i4i) the precise frontier between finite
and infinite bisimulations in the dense case for the subclass of stopwatch
automata.

1 Introduction

During the last decade, hybrid automata have been widely studied and especially
the reachability problem for hybrid automata. In this article, we study a model-
checking problem for a particular class of hybrid automata. Our motivation is
the important open problem of model-checking timed automata extended with
stopwatches used as observers [1].

We consider the model of weighted timed automata, which is an extension of
timed automata with tuples of costs on both edges and locations. This model
has been independently introduced in [6] and [7] (with single costs instead of
tuples of costs).

The properties of weighted timed automata that we want to check are for-
malized by formulas of the weighted C'TL logic, WCTL for short. This logic is
close to the DTL logic of [8] and the ICTL logic of [2].

Our approach is a systematic study of the tool bisimulation as done in the
works [10] and [11]. Indeed when the transition system of an hybrid automa-
ton has a finite bisimulation that can be constructed effectively, the reachability
problem and the model-checking problem are decidable. For instance this tech-
nique has been successfully applied to timed automata thanks to the region
graph. However the converse does not hold in general.
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Related works. There are few results on the model-checking of hybrid automata.
Indeed the wide study of the particular case of the reachability problem has
identified a frontier between decidability and undecidability. Among the numer-
ous results about this problem, let us mention the following ones. The important
class of initialized rectangular automata has a decidable reachability problem:;
however several slight generalizations of these automata lead to an undecidable
reachability problem, in particular for timed automata augmented with one stop-
watch [14]. The reachability problem is already undecidable for the simple class
of constant slope hybrid systems which are timed automata augmented with in-
tegrators; the reachability problem becomes decidable when the integrators are
used as observers (they are neither reset nor tested) [15]. The latter case has
also been studied in [1]. Of course the well-known class of timed automata has
a decidable reachability problem [5]. Recently the minimum-cost reachability
problem has been introduced, that is, determine the minimum cost of runs of
a weighted timed automaton from an initial location to a target location. This
problem has been proved decidable independently in [6] and [7].

Concerning the model-checking problem of hybrid systems, let us mention
two references. In [2], a model-checking procedure and its implementation in the
HYTECH tool are proposed for linear hybrid automata and the ICTL logic. This
procedure is not guaranteed to terminate. In [8], the model-checking problem is
proved to be decidable for some fragments of the DTL logic and a restrictive
class of weighted timed automata.

Our contribution. In this paper, we investigate the WCTL model-checking prob-
lem for weighted timed automata. The weighted timed automata can be seen as
constant slope hybrid systems where the integrators are used as observers and
the edges have been enriched with costs. We have chosen this class of hybrid
automata since they have a decidable reachability problem, even in the case
of minimum cost. We also focus on the subclass of automata with stopwatch
observers, which are weighted timed automata such that every integrator is a
stopwatch. The WCTL logic is similar to the ICTL logic. Formulas allow the
two actions forbidden in the weighted timed automata : to reset integrators and
to test them. This logic is a natural extension of the TCTL logic to formulate
properties about integrators instead of the total elapsed time.

Our first result is the undecidability of the model-checking problem. This
proves that there are situations where the model-checking procedure of [2] will
never terminate, even for classes of hybrid automata with a decidable reachability
problem. What is surprising is that the undecidability holds even for the discrete
time, a case where positive results usually happen. The proof is based on the
halting problem for 2-counter machines, with its reduction distributed to both a
weighted timed automaton and a WCTL formula. To the best of our knowledge,
this approach is new!. This proof works for automata with stopwatch observers
equipped with 1 clock and 3 integrators and for WCTL formulas where two
integrators are compared.

! with the exception of reference [9] where we have followed the same approach.



In the sequel of the paper, we limit our study to the WCTL,. logic, that is,
WCTL where integrators can only be compared with constants. One way to prove
that the model-checking problem is decidable is the effective construction of a
finite bisimulation for weighted timed automata. This is the approach already
proposed in [10] and [11]. The effectiveness is always guaranteed as our automata
are particular linear hybrid automata. It should be noted that the existence of
a finite bisimulation is sufficient but not necessary for decidability of the model-
checking problem.

For discrete time, when working with the WCTL,. logic, we show that the
bisimulations are always finite. It follows that the WCTL,. model checking prob-
lem for weighted timed automata is PSPACE-COMPLETE.

However for dense time, the panorama completely changes. In this case, we
identify the precise frontier between finite and infinite bisimulations for au-
tomata with stopwatch observers. Our results are the following. There exist au-
tomata with stopwatch observers that have no finite bisimulations already with
2 clocks and 1 integrator, or with 1 clock and 2 integrators. This is no longer
true with 1 clock and 1 integrator. It was a difficult task to find automata with
stopwatch observers with a small number of clocks and integrators for which no
finite bisimulation exists; our proofs are involved. The reason is that stopwatches
cannot be reset nor tested in these automata.

2 Weighted Timed Automata

In this section, we introduce the notion of weighted timed automaton, which
is an extension of timed automata with costs on both locations and edges. We
begin with the usual notations on timed automata.

Notations. Let X = {x1,...,z,} be a set of n clocks. The same notation z =
(21,...,25) is used for the clock variables and for an assignment of values to
these variables. Depending on whether the time is dense or discrete, the values
are taken in domain T equal to the set R* of nonnegative reals or to the set N
of natural numbers. Given a clock assignment z and 7 € T, x + 7 is the clock
assignment (z1 +7,...,2, + 7). The set G denotes the set of guards which are
finite conjunctions of atomic guards of the form x; ~ ¢ where x; is a clock, c € N
is an integer constant, and ~ is one of the symbols {<, <,=,>, >}. Notation
r |= g means that the clock assignment x satisfies the guard g. A reset r € 2%
indicates which clocks are reset to 0, that is, ¢’ = [x; := 0]4,erz. We use notation
XY for the set of atomic propositions.

Definition 1. A weighted timed automaton A = (L, E,Z, L,C) has the follow-
ing components: (i) L is a finite set of locations, (ii) E C L x G x P(X) x L is
a finite set of edges, (iii) T : L — G assigns an invariant to each location, (iv)
L : L — 2% is the labeling function and (v) C: LUE — N™ assigns a m-uple
of costs to both locations and edges.

An automaton with stopwatch observers is a weighted timed automaton such

that for every location 1, C(1) € {0,1}™ (instead of N™ ).



The concept of weighted timed automata has been independently introduced
in [6] and [7] (with single costs instead of m-uples of costs). In the previous
definition, we say that C(l) (resp. C(e)) is the cost of location I (resp. edge e).

We will sometimes use the notation z; = dy,..., 2, = d,, at location [ instead
of C(1) = (d1,...,dm); the variables z = (21,..., z,,) are called cost variables?.
Note that the variables 21, ..., 2, cannot be reset nor tested in weighted timed

automata, they are just observers. When an edge e or a location [ has null costs,
that is, C(e) = (0,...,0) or C(I) = (0,...,0), we say that it has no cost. When
an edge has no cost, nor reset and a guard that is always true, it is called an
empty edge.

Definition 2. The semantics of a weighted timed automaton A is defined as a
transition system T4 = (Q,—) with a set of states Q equal to {(I,x,2) | | €
L,z € T",z = I(l),2 € T™} and a transition relation — = |J, cp — defined
as follows

(lx,z) = (I, 2, 2))

— caseT > 0 (elapse of time at locationl) : 1 =1, 2’ = z+7 and 2’ = z+C(l) T,
— case 7 = 0 (instantaneous switch) : (I,g,70') € E, z E g, 2’ = [z; =
0)g;erx and 2’ = z 4 C(e).

In the previous definition, note that the value of 7 (strictly positive, or null)
indicates an elapse of time or an instantaneous switch. The m-tuple z of a state
(1, z, z) indicates global costs that accumulate the individual costs described by
the function C : either the cost rate of staying in a location (per time unit),
or the cost of an edge. A transition (I,z,z) = (I’,2’,2') is shortly denoted by
q — ¢ (given g and ¢/, it is easy to compute the unique 7 such that ¢ — ¢').
When 7 > 0, we also shortly denote by ¢+ 7 the state ¢’ of the transition ¢ — ¢'.

Definition 3. Given a transition system T4, a run p = (¢;)i>0 S an infinite
path in T4
TO T1 Ti
P=4qo — 41 — g2 q; — Gi+1 """
such that Xi>om; = oo (divergence of time). A finite run p = (¢;)o<i<; s any
finite path in T 4. A position in p is any state q; or q¢; + 7 with 0 < 7 < 7;. The
set of positions in p can be totally ordered.

We illustrate the definitions with the classical example of the gas burner
system.

Ezxample 1. The weighted timed automaton of Figure 1 represents a gas burner
system with two locations [ and I, one where the system is leaking and the other
where it is not leaking. There is 1 clock variable x to express that a continuous
leaking period cannot exceed 1 time unit and two consecutive leaking periods
are separated by at least 30 time units. There are 3 costs variables 21, 22, 23 such
that z1 describes the total elapsed time, zo the accumulated leaking time and z3
the number of leaks.

2 This notation comes from automata with integrators, the variables z1, ..., zm being
the integrators, see for instance [15].



(0,0,0)
Fig. 1. The gas burner system.

3 Weighted CTL Logic and Model-Checking

In this section, we introduce the weighted CTL logic, WCTL logic for short
(close to the ICTL logic of [2]). Two logics, discrete and dense, are proposed
according to discrete or dense time.

Notations. As done previously for clocks, the same notation z = (21,...,zy,) is
used for the cost variables and for an assignment of values to these variables.
A cost constraint m is of the form z; ~ ¢ or z; — z; ~ ¢ where z;, z; are cost
variables and ¢ € N is an integer constant. Notation z = 7 means that the
cost assignment z satisfies the cost constraint 7. Notation ¢ means any atomic
proposition o € 3.

Definition 4. The syntax of the discrete WCTL logic is given by the following
grammar

pu=o|7m|-p|eVe |30¢ | eUp | WU | 2z - ¢

Dense WCTL formulae are defined in the same way, except that operator 3() is
forbidden.

”

The WCTL logic uses freeze quantifiers “z; -” on the cost variables z;, 1 <
1 < m. This logic allows to reset such variables and to test them. These actions
are forbidden in weighted timed automata, where the cost variables are only
observers. Note that the TCTL logic [4] is a particular case of WCTL when
each cost variable z; describes the total elapsed time.

We restrict ourselves to closed WCTL formulas, i.e. formulas ¢ such that
every occurrence of a cost variable z; in ¢ is bound by a freeze quantifier. We
also impose that different freeze quantifiers bind different cost variables, i.e. two
occurrences of the freeze quantifier z;- are forbidden in the same formula. For
convenience, we use the following abbreviations: 30p = TIUp, VO = TV,
d0¢ = VO, and Vlp = -30—p.

We now give the semantics of WCTL.

Definition 5. Suppose T = N. Let A be a weighted timed automaton and q =
(I,x,z) be a state of the transition system T4 of A. Let ¢ be a discrete WCTL
formula. Then the satisfaction relation q = ¢ is defined inductively as indicated
below. In case T = R and ¢ is a dense WCTL formula, the satisfaction relation
is defined in the same way, except that q =30 ¢ does not exist.



—qglE=oiffoeL(l);

—qETiffzEmw;

—aE e iffqlE e

—akEeVYifaE e orqE;

— ¢ =30 ¢ iff there exists a run p = (¢;)i>0 in Ta with ¢ = qo and qo ¢
satisfying T =0 or 7 = 1, such that q1 = ¢;

— q = @3V iff there exists a run p = (¢;)i>0 i Ta with g = qo, there exists
a position p in p such that p = and p’ = ¢ for all p’ < p;

— q E oYU iff for any run p = (gi)i>o0 in Ta with ¢ = qo, there exists a
position p in p such that p = and p’ = ¢ for all p’ < p;

—qglE=zi-piff I,z [z :=0]2) E .

Let us come back to the gas burner system of Example 1 and formalize some
properties by WCTL formulas.

Ezxample 2. Consider the first property “there exists a run with an average leak-
ing time always bounded by 0.5” (in other words, 2zo < z3). Since the cost
constraints 7 allowed in WCTL are of the form z; ~ ¢ or z; — z; ~ ¢, we replace
the cost C(I) = (1,1,0) by (1,2,0) in the automaton of Figure 1. The WCTL
formula for the given property is therefore

Z9 23" (E”]ZQ S 23).

The next property we want to formalize is “in any time interval longer than 60
time units, the accumulated leaking time is at most 5% of the interval length”
(that is, z1 > 60 = 20z2 < z1). Again we have to modify the automaton by
replacing C(I) by (1,20,0). The related WCTL formula is

2129 (VD(Zl >60= 29 < 21))

Finally, the property “there exists a run such that the accumulated leaking time
is at most 5% of the time interval length and the average leaking time is bounded
by 0.5, until the system never leaks” is formalized as

212923 ((22 < 21 A 29 < 2z3) U (VO-leak))
if C(1) is replaced by (1,20,0) and C(l,x < 1,z :=0,1’) by (0,0, 10).

The problem that we want to study in this article is the following model-
checking problem, for discrete and dense time.

Problem 1. Given a weighted timed automaton A4 and a state q of T 4, given a
WCTL formula ¢, does ¢ = hold ? (T =Nor T =R™")

The next theorem states that this problem is undecidable, already for au-
tomata with stopwatch observers.

Theorem 1. In both cases of discrete and dense time, the WCTL model-checking
problem for automata with stopwatch observers is undecidable.



Corollary 1. Problem 1 is undecidable.

Proof. (of Theorem 1) The proof is based on a reduction of the halting prob-
lem for a 2-counter machine. We recall that a machine with 2 counters C7 and
C5 can be described by a linear labeled program allowing the following basic
instructions:

Bl S

goto k' ;

if C; > 0 then goto k' else goto k” ;

Ci = Oz +1 ;

C; := C; — 1 (this operation is not defined if C; = 0) ;
stop .

The emulation of the 2-counter machine is done partly by an automaton with
stopwatch observers A and partly by a WCTL formula ¢. Suppose that the first
label of the program is kg and the last instruction is a stop instruction labeled
by k¢. The 2 counters are encoded by 3 cost variables as follows

Cl = Z1 — 29, 02221—23.

The automaton A = (L, E,Z, £,C) has 1 clock  and no cost on its edges. The
set X of atomic propositions labeling L contains an atomic proposition o for
each label k of the program and 4 additional atomic propositions p1, p}, p2 and
p5. The set L contains a location for each label k of the program, which is labeled
by oy; it contains additional locations.

The goto and stop instructions are easily encoded in A. The instruction for
incrementing counter C is encoded by the subautomaton given in Figure 2. The

Fig. 2. Incrementing counter C;.

subautomaton for incrementing C5 is similar except that the cost of the central
state is (1,1,0).

The instruction for decrementing counter C; is encoded in Figure 3. The
atomic proposition p; is a witness that C7 > 0 while p} is a witness that C; = 0.
Since the automaton A is not allowed to test its cost variables, the formula ¢
will check if C7 = 0 or C7 > 0 depending on the values of z; and z2. A similar
subautomaton is given for counter Cy with atomic propositions py and pj.

The if instruction is encoded similarly to the decrementation instruction, see
Figure 4. Again ¢ will check which case occurs.

Let us now give formula ¢ :

Pm=21—22>0ANp]=>21—20=0
IR, U oy, ).
Tko 71722123 <(/\p2:>2:1—23>0/\p’2:>2:1—23:0 Tk



Fig. 4. If instruction with test on Fig. 5. Incrementing counter C}
Cy. with no cost in the locations.

Clearly, the 2-counter machine halts on the instruction stop labeled by k; iff
q = ¢ for the state ¢ equal to (lp,0,0,0,0) where ly is the location labeled by
ko. It follows that the model-checking problem is undecidable. 0O

Comments. The previous proof works for discrete or dense time. The automaton
A is an automaton with stopwatch observers using 1 clock x and 3 cost variables
21, 22, z3. All its edges have no cost. The formula ¢ uses cost constraints of the
form z; — z; ~ 0.

The proof can be easily adapted if one prefers an automaton with all its
locations having no cost. In this case, A has no clock and again 3 cost variables.
In Figure 5 an incrementation of counter C; is depicted. The formula ¢ remains
identical. One can imagine a third proof with 1 clock and 3 cost variables, as a
mix of both previous approaches, such that there exist non null costs on certain
locations and on certain edges.

In the sequel of the article, we will work with the WCTL logic restricted
to cost constraints m of the form z; ~ c¢. It is denoted WCTL,.. The related
model-checking problem is the following one.

Problem 2. Given a weighted timed automaton A and a state g of T 4, given a
WCTL, formula ¢, does ¢ = hold ? (T=Nor T =R")



Ezxample 3. For the gas burner system of Example 1, the property “if the number
of leaks is less than 5, then the leaking time is strictly bounded by 5” is formalized
in WCTL, by the next formula

2’2'2’3~V|:|(23<5$22<5).

The next property “at each position of every run, the number of leaks does not
exceed 2 in any time interval less than 100 time units” is formalized by

4 Bisimulations

In the sequel of the article, we want to study Problem 2 via bisimulations. We
recall in this section useful notions on time abstracting bisimulations (see [10]
or [3]).

Definition 6. Let A be a weighted timed automaton and T4 = (Q, —) its tran-
sition system. A bisimulation of A is an equivalence relation =~ C Q X @ such
that for all q1,q92 € Q, @1 =~ g2,

— whenever ¢ 5 q, with q; € Q, there exists ¢4 € Q such that g2 R q, and
G~ ay
— whenever q1 = ¢} with 7 > 0 and ¢} € Q, there exist ' > 0 and ¢ € Q such

that g2 = ¢y and ¢} =~ qb.

A bisimulation ~ is finite if it has a finite number of equivalence classes. It is
said to respect a partition P of the set @ if any P € P is a union of equivalence
classes of ~. A set P C @ will be sometimes called a region.

Given a region P C @, the set Pre(P) of predecessor states of P is defined
as Preg or Presg according to both kinds of transitions : instantaneous switch
or elapse of time, by

Preo(P)={q€Q|3d €ePq>q};

Pre-o(P)={qeQ |3/ e P3Ir>0q>q}.

A crucial property of a bisimulation ~ is that for every equivalence class P of
~2, the predecessor Pre(P) is a union of equivalence classes. It follows that the
coarsest bisimulation respecting a partition Py can be computed by the next
procedure.

Procedure Bisim.
Initially P := Py ;
While there exist P, P’ € P such that @ C PN Pre(P’) C P, do
Py := PN Pre(P’), P, := P\ Pre(P’)
P = (P\{PHUIP, P2} ;
Return P .



Proposition 1. Let A be a weighted timed-automaton. The procedure Bisim
terminates iff the coarsest bisimulation of A that respects a partition P is finite.

An important property of bisimulations is that they preserve WCTL, for-
mulas if they respect a well-chosen initial partition. We omit the proof since it
is similar to the proof given in [4] for timed automata and the TCTL logic.

Proposition 2. Let A be a weighted timed automaton and ¢ be a WCTL, for-
mula. If A has a bisimulation = that respects the partition P induced by

1. the atomic propositions o labeling the locations of A,
2. the cost constraints ™ appearing in ,
3. the reset of the cost variables in ¢ (operator z-),

then for any states q,q" of Ta such that q =~ ¢', we have ¢ = ¢ iff ¢ = .

As a consequence of this proposition, it can be proved that if each step of
Procedure Bisim is effective and if this procedure terminates, then Problem 2 is
decidable. Note that the effectiveness hypothesis is not necessary since weighted
timed automata are linear hybrid automata for which the effectiveness of Pro-
cedure Bisim is known [10].

Corollary 2. If a weighted timed automaton A has a finite bisimulation respect-
ing the partition of Proposition 2, then the WCTL, model-checking problem is
decidable.?

To conclude this section, let us recall the classical bisimulation ~; for timed
automata [5]. Let T4 be the transition system of a timed automaton .A. Let
C € N be the supremum of all constants ¢ used in guards of A. For 7 € T, 7
denotes its fractional part and |7] its integral part.

Definition 7. Two states ¢ = (I,xz), ¢ = (I',2') of Ta are equivalent, q ~; ¢/,
iff the following conditions hold

=1

— For any i, 1 <i <mn, either |x;| = |z}] or z;,z} > C ;

— For any i # j, 1 <i,j <n such that z;,x; < C, T; <T; iff T, Sf} R

— For any i, 1 <i<mn such that z; <C, 7; =0 iff T, = 0.

Note that for discrete time, only the first two conditions have to be considered
in this definition. Thus given a clock x;, its possible values in an equivalence class
are1,2,...,Cand CT ={neN|n>C}

5 Frontier between Finite and Infinite Bisimulations

In this section, we study Problem 2 with the approach of Corollary 2. We begin
with the simple case of discrete time before studying the more complex case of
dense time.

% The same result holds for WCTL (instead of WCTL,) if the cost constraints in
Condition 2 of Proposition 2 are general constraints z; ~ ¢ or z; — z; ~ c.



5.1 Discrete Time

Theorem 2. Let T = N. Any weigthed timed automaton has a finite bisimula-
tion respecting the partition P of Proposition 2.

Proof. (Sketch) This result is proved in [13] for more general automata which
are the discrete-time rectangular automata, but without costs on the edges.
However, the proposed bisimulation remains valid for weighted timed automata.
It is the usual bisimulation of timed automata (see Definition 7) adapted as
follows : the cost variables are treated as clock variables, and constant C' is the
supremum of the constants used in the guards of A and in the cost constraints
of . ad

Corollary 3. Let T = N. The WCTL, model-checking problem for weigthed
timed automata is PSPACE-COMPLETE.

Proof. (Sketch). The PSPACE-HARDNESS is a direct consequence of the fact
that TCTL model-checking on timed automata is PSPACE-COMPLETE [4]. The
PSPACE-EASINESS is established using classical arguments, see [4]. First note
that the number of equivalence classes of the bisimulation given in the proof of
Theorem 2 is bounded by an exponential in the size of the input of the model-
checking problem (sum of the sizes of the automaton and the formula). We can
turn the usual labeling algorithm used for CTL-like logics into a nondeterministic
algorithm that uses polynomial space and computes the labels of regions as they
are required. By Savitch’s theorem, we know that there also exists a deterministic
version of this algorithm that uses polynomial space. O

5.2 Dense Time

For dense time, the panorama is completely different. We will identify the precise
frontier between finite and infinite bisimulations for the subclass of automata
with stopwatch observers. We will conclude with some comments on the entire
class of weighted timed automata.

Automata with stopwatch observers. By the proof of Theorem 1, for
WCTL, we know that there exist automata with stopwatch observers using 1
clock and 3 cost variables for which any bisimulation respecting the partition
P of Proposition 2 is infinite. The next theorem states that, for WCTL,., it is
already the case with 1 clock and 2 cost variables, as well as with 2 clock and 1
cost variables?.

Theorem 3. Let T = R™. There exists an automaton with stopwatch observers
A using either 1 clock and 2 cost variables, or 2 clock and 1 cost variables,
and a WCTL,formula ¢ such that no bisimulation respecting the partition P of
Proposition 2 is finite.

4 We were able to establish this result partly with experiments performed with the
HYTECH tool [12].



Proof. The two automata that we are going to consider are given in Figures 6
and 7. Note that these automata have empty edges and no labeling of the loca-

Fig. 6. 1 clock and 2 cost variables. Fig. 7. 2 clocks and 1 cost variables.

tions by atomic propositions.

The proof is based on Procedure Bisim and Proposition 1 with the initial
partition P given in Proposition 2. Note that Condition 1 of Proposition 2 is
trivially satisfied.

Let us begin with the case of 1 clock variable x and 2 cost variables z7, za.
As initial partition P, we take the partition induced by the bisimulation given
in Definition 7. The following discussion justifies this choice.

At location of Figure 6 where 2; = 23 = 1 (we denote this location by 1),
the behavior of z1, 2o is the one of a clock. We have thus 3 clocks x, z1, 29 at
location I. As shown in [5], if 2, z; and z3 are compared with constant 1, then
Procedure Bisim leads to the bisimulation ~2; of Definition 7 in the cube [0,1]3
and in location [. A way to get these comparisons with constant 1 is simply to
add some guard or invariant = 1 in the automaton of Figure 6 and to consider
some WCTL, formula ¢ with the two cost constraints m; and 7o respectively
equal to z1 = 1 and 2z = 1. Again by Procedure Bisim, the bisimulation =z
is transfered to the other locations by applying Preg on the empty edges of
the automaton. Therefore, as announced before, we can take as partition P the
partition of the cube [0, 1]® induced by ~.

(1) 1 clock variable © and 2 cost variables z1, z2.

Let us show that Procedure Bisim does not terminate because it generates an
infinite number of regions R,,, n > 1, each containing exactly one triple (x, z1, 22)
such that®

1 3"+1
T3n’ 2.3n )
(a) We need to work with a particular region generated by the procedure (see
Figure 8)

(1721722) = (

S O=zr<z1<z9<1, 229—21=1.

® When speaking about the constructed regions, we can omit the locations since the
empty edges transfer the information to each location.



It is constructed as (see Figure 9)

— 8 =Preso(PI)NPwith P : 0<zi1=20<z=1,P: 0< 2 <29=
r<l1,and 21 =1, 25 =0,

— S:PT€>0(S/)QP3WithP3: 0:x<21<22<1,and21:22:0.

zZ2
1 ‘ 21 =22 T p
l/ | Zl : . ‘: o . | o
2 : —
X 21 Zé
0 S 1 1 P S
1 0 1
Fig. 8. Region S (z = 0). Fig. 9. Its construction.

Looking at the bold intervals in Figure 9, we see that on line S, we have zo—2z1 =
1 — z9. It follows that 2z9 — z; = 1 must be satisfied in S.
(b) The first region Ry = {0, %, 2} is then constructed as (see Figures 10 and 11)

*R/:PT’6>0(P1)QP2WithP1:0<1‘:2,’1<22:1,P2201I<21<
zz<1,and21:0,z'2:1,
- Ry :PTeo(R/l)ﬁS.

’
Z92 Rl

///,

=

1 z ! ‘
3 1 0 1

Fig. 10. Region R;. Fig. 11. Its construction.

Looking at the bold intervals in Figure 11, one verifies that R is the region
Rl : 0=x<21<2:<1, z1+22=1.

In Figure 10, the intersection of R} and S, which is nothing else than Ry =

Preg(R}) N S, is the point (0, %, 2).
(¢c) It remains to explain how to construct R, 41 from R,. It is done as follows

(see Figures 12 and 13)



S1 = Preg(R,) NPy with Py : 0<z1 <zm<z=1,

Sy = Preso(S]) NPy with Py: 0<z =2 <z22<1,and 2, =0, 23 =0,

— S, = Preso(S5) NP; with Py: 0<z <z <z2<1,and 2, =0, 25 =1,
— R =Preso(S5)NPywith Py: 0=x<2 <2 <1,and %) =1, £, =0,
- Rn+1 = PTeo(R,/nJrl) ﬂS

x Z1 22 R
R) ‘ e
22 1 : 2 2 -7 5
1 e
T = Z1 22 S/
. 2
| Ry
1 r ,
2 B Tz 2y g
— i O3
i T Zy Z2 /
0 ; | i | n+1
3 “1 0 1
Fig. 12. Region Rp41. Fig. 13. Its construction from R,,.

Recall that R,, = (0, %, 3;;21) Thus looking at the bold intervals of Figure 13

(in particular at lines R;, ,;, S5 and R,)), the next equality must hold on R;,

3"+1
2377

z1+t 20 =

On Figure 12, the intersection of R, and S, which is R,1, is therefore the
. n+1

point (0, zarr, S5t )-

(2) 2 clock variables x1,x2 and 1 cost variable z. (Sketch)

The proof for the case of 2 clock variables x1,x2 and 1 cost variable z is in
the same vein as before. The automaton is the one of Figure 7. Procedure Bisim
does not terminate because it generates an infinite number of regions R,,, n > 1,
each formed by the unique triple

1 1

— (01— —, —
(IEl,SCQ,Z) (7 on’ gn

).
O

Any timed automaton has a finite bisimulation respecting the partition P of
Proposition 2 (see Definition 7). Thus the remaining case to establish a precise
frontier between finite and infinite bisimulations is the case of automata with
stopwatch observers using 1 clock and 1 cost variables.



Theorem 4. Let T = RT. Let A be an automaton with stopwatch observers
using 1 clock and 1 cost variables x and z. Then A has a finite bisimulation
respecting the partition P of Proposition 2.

Proof. (Sketch) The proposed bisimulation is the one of Definition 7, where z is
treated as a clock. O

Corollary 4. The WCTL, model-checking problem for automata with stopwatch
observers using 1 clock and 1 cost variables is decidable.

Comments on weighted timed automata. All the results of the previous
paragraph are concerned with automata with stopwatch observers. If we consider
weighted timed automata, the frontier between finite and infinite bisimulations
is easily established. There exist weighted timed automata with 1 clock and 1
cost variables x and z such that Z = dy, 2 = do, with di,ds > 0 two integer
constants, for which no finite bisimulation exists [11] (see Figure 14). If for
automata with 1 clock and 1 cost variables z and z, we impose that there exists
an integer constant d > 0 such that Z € {0,d} in each location, then a finite
bisimulation exists. It is the bisimulation of Definition 7, where z is treated as a
clock and each diagonal z — x = ¢ is replaced by z — dx = ¢ (see Figure 15). Note

x
x
z
Z Fig. 15. Finite bisim-
Fig. 14. Infinite bisimulation when di = 1,d> = 3. ulation when d = 3.

that a finite bisimulation still exists if we allow to add to the variables z and z
additional cost variables zo, ..., 2, having a null cost on the locations and an
arbitrary cost on the edges. In Example 1, z3 is such a variable. The required
finite bisimulation is a direct product of the bisimulation given before for x and
z with the bisimulation of Definition 7 applied to the variables zo, . . ., z,, treated
as clocks.

Note that Problem 2 remains unanswered for dense time (except in the case
of Corollary 4) since the existence of a finite bisimulation is sufficient but not
necessary for decidability of the model-checking problem. For instance, in the
particular case of weighted timed automata with one cost variable, the cost-
bounded reachability problem is shown to be decidable in [1] while there is no
finite bisimulation as mentioned above.
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