Formal Methods for System Design

Chapter 2: Modeling systems

Mickael Randour
Mathematics Department, UMONS

September 2021

1 Transition systems
2 Comparing TSs: why, how, graph isomorphism, trace equivalence

3 Bisimulation

4 Simulation

1 Transition systems

2 Comparing TSs: why, how, graph isomorphism, trace equivalence

3 Bisimulation

4 Simulation

Transition system

Transition system for a (rather stupid) beverage vending machine [BK08].
■ Model describing the behavior of a system.
■ Directed graphs: vertices $=$ states, edges $=$ transitions.
■ State: current mode of the system, current values of program variables, current color of a traffic light. . .

- Transition as atomic actions: mode switching, execution of a program instruction, change of color...

Formal definition

Definition: Transition system (TS)

Tuple $\mathcal{T}=(S, A c t, \longrightarrow, I, A P, L)$ with

- S the set of states,
- Act the set of actions,

■ $\longrightarrow \subseteq S \times \operatorname{Act} \times S$ the transition relation,
■ $I \subseteq S$ the set of initial states,

- $A P$ the set of atomic propositions, and
- $L: S \rightarrow 2^{A P}$ the labeling function.

We often consider finite TSs, i.e., $|S|,|A c t|,|A P|<\infty$, but not necessarily true in general.

Notation: sometimes we write $s \xrightarrow{\alpha} s^{\prime}$ instead of $\left(s, \alpha, s^{\prime}\right) \in \longrightarrow$.

Back to the example

■ $S=\{$ pay, select, beer, soda $\}$,

- Act $=\{$ insert_coin, get_beer, get_soda, $\tau\}$,

■ Some transitions: pay $\xrightarrow{\text { insert_coin }}$ select, select $\xrightarrow{\tau}$ beer.

- $I=\{$ pay $\}$,

What about the labeling?

Back to the example

Depends on what we want to model!

- Simple choice: $\forall s, L(s)=\{s\}$.
- Say the property is "the vending machine only delivers a drink after providing a coin"
$\hookrightarrow A P=\{$ paid, drink $\}, L($ pay $)=\emptyset, L($ select $)=\{$ paid $\}$ and $L($ soda $)=L($ beer $)=\{$ paid, drink $\}$.
\Rightarrow useful to model check logic formulae.

Back to the example

\hookrightarrow When the labeling is not important, we often omit it.
\hookrightarrow We do the same for actions or simply use internal actions (τ).
Actions are often used to model communication mechanism (e.g., parallel processes).

Related models

We talk about transition systems (TSs) and adopt the definition of [BK08]. Equivalent models are often used in the literature.

- Kripke structure (KS) ~ TS without labels on actions.
- Labeled transition system (LTS) ~ TS without labels on states.

Semantics of TSs: non-determinism

When two actions are possible (select), the choice is made non-deterministically!

Also true for the initial state if $|I|>1$.
\hookrightarrow Meaningful to model interleaving of $\|$ executions for example.
\hookrightarrow Also for abstraction or to model an uncontrollable environment
(here, drink choice by the user).

Basic concepts: predecessors and successors

Let $\mathcal{T}=(S, A c t, \longrightarrow, I, A P, L)$ be a TS. For $s \in S$ and $\alpha \in A c t$, we define the following sets.

Direct $(\alpha$ - $)$ successors of s :

$$
\operatorname{Post}(s, \alpha)=\left\{s^{\prime} \in S \mid s \xrightarrow{\alpha} s^{\prime}\right\}, \quad \operatorname{Post}(s)=\bigcup_{\alpha \in A c t} \operatorname{Post}(s, \alpha) .
$$

Direct $(\alpha$-)predecessors of s :

$$
\operatorname{Pre}(s, \alpha)=\left\{s^{\prime} \in S \mid s^{\prime} \xrightarrow{\alpha} s\right\}, \quad \operatorname{Pr}(s)=\bigcup_{\alpha \in \operatorname{Act}} \operatorname{Pre}(s, \alpha) .
$$

+ natural extensions to subsets of S.

Back to the example

Some examples:

- Post $($ select $)=\{$ soda, beer $\}$,
- $\operatorname{Pre}($ pay, get_beer $)=\{$ beer $\}$,
- $\operatorname{Post}($ beer,$\tau)=\emptyset$.

Terminal states

A state $s \in S$ is called terminal iff $\operatorname{Post}(s)=\emptyset$.
\hookrightarrow For reactive systems, those states should in general be avoided.
\Rightarrow deadlocks

Basic concepts: executions $(1 / 2)$

$$
\text { Let } \mathcal{T}=(S, A c t, \longrightarrow, I, A P, L) \text { be a TS. }
$$

Finite execution fragment:
$\varrho=s_{0} \alpha_{1} s_{1} \alpha_{2} \ldots \alpha_{n} s_{n}$ such that $s_{0} \xrightarrow{\alpha_{1}} \ldots \xrightarrow{\alpha_{n}} s_{n}$.
Infinite execution fragment:
$\rho=s_{0} \alpha_{1} s_{1} \alpha_{2} \ldots$ such that $s_{i} \xrightarrow{\alpha_{i+1}} s_{i+1}$ for all $i \geq 0$.
Maximal execution fragment:
Fragment that cannot be prolonged.

Initial execution fragment:

Fragment starting in $s_{0} \in I$.

Basic concepts: executions $(2 / 2)$

Execution:

Initial and maximal execution fragment.
Reachable states:

$$
\begin{aligned}
\operatorname{Reach}(\mathcal{T}) & =\left\{s \in S \mid \exists s_{0} \in I \wedge s_{0} \xrightarrow{\alpha_{1}} \ldots \xrightarrow{\alpha_{n}} s_{n}=s\right\} \\
& =\operatorname{Post}^{*}(I)
\end{aligned}
$$

Back to the example

Some examples.
■ $\rho_{1}=$ pay $\xrightarrow{\text { insert_coin }}$ select $\xrightarrow{\tau}$ beer $\xrightarrow{\text { get_beer }}$ pay $\xrightarrow{\text { insert_coin }} \ldots$
$\hookrightarrow \rho_{1}$ is an execution.
■ $\rho_{2}=$ beer $\xrightarrow{\text { get_beer }}$ pay $\xrightarrow{\text { insert_coin }}$ select $\xrightarrow{\tau}$ beer $\xrightarrow{\text { get_beer }} \ldots$
$\hookrightarrow \rho_{2}$ is not (maximal but not initial).
■ $\varrho_{3}=$ pay $\xrightarrow{\text { insert_coin }}$ select $\xrightarrow{\tau}$ soda $\xrightarrow{\text { get_soda }}$ pay
$\hookrightarrow \varrho_{3}$ is not (initial but not maximal).

- $\operatorname{Reach}(\mathcal{T})=S$.

Modeling systems

The reference book [BK08] contains different examples illustrating how to construct formal models from real applications or segments of program code.

\Rightarrow We survey some of them in the following.

\Rightarrow Focus on concurrency: prone to errors.

Independent traffic lights on non-intersecting roads

■ Concurrency is represented by interleaving.
\triangleright Non-deterministic choice between activities of simultaneously acting processes.
\triangleright In general, needs to be complemented with fairness assumptions.

Interleaving semantics [BK08].

Mutex with semaphores (1/3)

- Program graphs (PGs) retain conditional transitions.
\hookrightarrow Interleaving must be done at this level to deal with shared variables.
\Rightarrow Then we consider the TS $\mathcal{T}\left(P G_{1}| | \mid P G_{2}\right)$.

Program graphs for semaphore-based mutex [BK08].

Mutex with semaphores (2/3)

$P G_{1} \|| | P G_{2}$ for semaphore-based mutex [BK08].
 The TS unfolding will tell us if $\left\langle\right.$ crit $_{1}$, crit $\left._{2}\right\rangle$ is reachable (which we want to avoid obviously).

Mutex with semaphores $(3 / 3)$

$\mathcal{T}\left(P G_{1}| | P G_{2}\right)$ for semaphore-based mutex [BK08].
Mutual exclusion is verified:

$$
\left\langle c_{1}, c_{2}, y=\ldots\right\rangle \notin \operatorname{Reach}\left(\mathcal{T}\left(P G_{1} \| P G_{2}\right)\right)
$$

Mutex with semaphores $(3 / 3)$

$\mathcal{T}\left(P G_{1}| | \mid P G_{2}\right)$ for semaphore-based mutex [BK08].
The scheduling problem in $\left\langle\mathbf{w}_{1}, \mathbf{w}_{2}, y=1\right\rangle$ is left open. \hookrightarrow implement a discipline later (LIFO, FIFO, etc) or use an algorithm solving the issue explicitly: Peterson's mutex.

Peterson's mutex algorithm (1/2)

$P G_{1}$:
$P G_{2}$:

Program graphs for Peterson's mutex [BK08].

Peterson's mutex algorithm (2/2)

$\mathcal{T}\left(P G_{1}| | \mid P G_{2}\right)$ for Peterson's mutex [BK08].
Mutual exclusion is verified:

$$
\left\langle c_{1}, c_{2}, x=\ldots\right\rangle \notin \operatorname{Reach}\left(\mathcal{T}\left(P G_{1} \| P G_{2}\right)\right) .
$$

Peterson's mutex algorithm (2/2)

$\mathcal{T}\left(P G_{1} \| \mid P G_{2}\right)$ for Peterson's mutex [BK08].
Peterson's also has bounded waiting, hence fairness is satisfied.
Not true for semaphore-based (without discipline): processes could starve.

The state(-space) explosion problem

Verification techniques operate on TSs obtained from programs or program graphs. Their size can be huge, or they can even be infinite. Some sources:

- Variables
\triangleright PG with 10 locations, three Boolean variables and five integers in $\{0, \ldots, 9\}$ already contains $10 \cdot 2^{3} \cdot 10^{5}=8.000 .000$ states.
\triangleright Variable in infinite domain \Rightarrow infinite TS!
- Parallelism
$\triangleright \mathcal{T}=\mathcal{T}_{1}| ||\ldots|| | \mathcal{T}_{n} \Rightarrow|S|=\left|S_{1}\right| \cdot \ldots \cdot\left|S_{n}\right|$.
\hookrightarrow Exponential blow-up!
\Rightarrow Need for (a lot of) abstraction and efficient symbolic techniques (Ch. 5) to keep the verification process tractable.

1 Transition systems

2 Comparing TSs: why, how, graph isomorphism, trace equivalence

3 Bisimulation

4 Simulation

Why?

- To see if two TSs are similar.
\triangleright Is one a refinement or an abstraction of the other?
\triangleright Are the two indistinguishable w.r.t. observable properties?
- To be able to model check large systems.
\triangleright If \mathcal{T}_{1} is a small abstraction of \mathcal{T}_{2} that preserves the property to be checked, then model checking \mathcal{T}_{1} is more efficient!
\hookrightarrow Can help for large or infinite systems: not all complexity is necessary!

■ What does it mean to preserve a property?
\triangleright Each type of relation preserves a different logical fragment (intuitively, a different kind of properties).
\hookrightarrow Depends on what we are interested in.

Linear time vs. branching time semantics (1/2)

TS \mathcal{T} with state labels $A P=\{a, b\}$ (state and action names are omitted).

■ Linear time semantics deals with traces of executions.
\triangleright The language of (in)finite words described by \mathcal{T}.
\triangleright See LTL in Ch. 3.
\triangleright E.g., do all executions eventually reach \{0\}? No.

Linear time vs. branching time semantics (2/2)

- Branching time semantics deals with the execution tree.
\triangleright Infinite unfolding considering all branching possibilities.
\triangleright See CTL in Ch. 4.
\triangleright E.g., do all executions always have the possibility to eventually reach (\{b\}) ? Yes.
\hookrightarrow Cannot be expressed as a LT property (intuitively, requires branching).

Which type of relation between TSs should we use?

■ Linear time properties (e.g., LTL)
\Rightarrow Trace equivalence/inclusion is an obvious choice.
But language inclusion is costly! (PSPACE-complete)
\hookrightarrow Other relations provide a more efficient alternative (P-complete).

■ Branching time semantics (e.g., CTL)
\Rightarrow Bisimulation: related states can mutually mimic all individual transitions.
\Rightarrow Simulation: one state can mimic all stepwise behaviors of the other, but the reverse is not necessary.

In the following, we assume state-based labeling and often that there is no deadlock (\rightsquigarrow self-loops otherwise).

Graph isomorphism (1/2)

Idea: isomorphism up to renaming of the states and actions.

Definition: TS isomorphism

$\mathcal{T}_{1}=\left(S_{1}, A c t_{1}, \longrightarrow_{1}, I_{1}, A P_{1}, L_{1}\right)$ and
$\mathcal{T}_{2}=\left(S_{2}, A c t_{2}, \longrightarrow_{2}, I_{2}, A P_{2}, L_{2}\right)$ are isomorphic if there exists a bijection f such that

$$
\begin{aligned}
& \text { } S_{2}=f\left(S_{1}\right), \\
& \\
& A c t_{2}=f\left(A c t_{1}\right), \\
& \\
& s{\xrightarrow{\alpha} s_{1} s^{\prime} \Longleftrightarrow f(s) \xrightarrow{f(\alpha)}_{2} f\left(s^{\prime}\right),}^{\text {} s \in I_{1} \Longleftrightarrow f(s) \in I_{2},} \\
& A P_{1}=A P_{2}, \\
& \forall
\end{aligned} \forall S_{1}, L_{1}(s)=L_{2}(f(s)) .
$$

Preserves properties but much too restrictive!

Graph isomorphism (2/2)

Those TSs are clearly "equivalent" (i.e., indistinguishable for meaningful properties) but are not isomorphic.
\Rightarrow Graph isomorphism is not interesting for model checking.

Trace inclusion and trace equivalence $(1 / 6)$

What is a trace?

\triangleright An execution seen through its labeling.

Definition: paths and traces

Let $\mathcal{T}=(S, A c t, \longrightarrow, I, A P, L)$ be a TS and $\rho=s_{0} \alpha_{1} s_{1} \alpha_{2} \ldots$ one of its executions:

- its path is $\pi=\operatorname{path}(\rho)=s_{0} s_{1} s_{2} \ldots$,

■ its trace is $\operatorname{trace}(\pi)=L(\pi)=L\left(s_{0}\right) L\left(s_{1}\right) L\left(s_{2}\right) \ldots$
We denote $\operatorname{Paths}(\mathcal{T})$ (resp. $\operatorname{Traces}(\mathcal{T}))$ the set of all paths (resp. traces) in \mathcal{T}.

Defined for executions (i.e., maximal and initial fragments), but also for fragments starting in a state $s(\operatorname{Paths}(s)$ and $\operatorname{Traces}(s))$ or a subset of states $S^{\prime} \subseteq S\left(\operatorname{Paths}\left(S^{\prime}\right)\right.$ and $\left.\operatorname{Traces}\left(S^{\prime}\right)\right)$, as well as for finite fragments $\left(\right.$ Paths $_{f i n}$ and Traces $\left._{f i n}\right)$.

Trace inclusion and trace equivalence (2/6)

Example

■ Notice the added self-loop on

- Paths:

- Corresponding traces:

$$
\begin{aligned}
& \operatorname{trace}\left(\pi_{1}\right)=\{a\} \emptyset\{a\} \emptyset\{a\} \emptyset \ldots=(\{a\} \emptyset)^{\omega} \\
& \operatorname{trace}\left(\pi_{2}\right)=\{a\} \emptyset\{a, b\}\{a, b\}\{a, b\}\{a, b\} \ldots=\{a\} \emptyset\{a, b\}^{\omega} \\
& \operatorname{trace}\left(\pi_{3}\right)=\{a\} \emptyset\{a\} \emptyset\{b\}\{b\} \ldots=\{a\} \emptyset\{a\} \emptyset\{b\}^{\omega}
\end{aligned}
$$

Traces are (infinite) words on alphabet $2^{A P}$.
\hookrightarrow alphabet exponential in $|A P|$.

Trace inclusion and trace equivalence (3/6)

Example (cont'd)

Which languages does this TS describe?

- Finite traces:

$$
\operatorname{Traces}_{f i n}(\mathcal{T})=\{a\}\left(\emptyset\{a, b\}^{*}\{a\}\right)^{*}\left[\varepsilon \mid \emptyset\left(\{b\}^{*} \mid\{a, b\}^{*}\right)\right]
$$

- Traces:

$$
\begin{aligned}
& R=\left(\emptyset\{a, b\}^{*}\{a\}\right) \\
& \operatorname{Traces}(\mathcal{T})=\{a\} R^{*}\left[R^{\omega}\left|\left(\emptyset\{a, b\}^{\omega}\right)\right| \emptyset\{b\}^{\omega}\right]
\end{aligned}
$$

Trace inclusion and trace equivalence (4/6)

Trace inclusion
■ Linear-time (LT) properties (e.g., LTL) specify which traces a TS should exhibit.

■ Trace inclusion \sim implementation relation.
$\operatorname{Traces}(\mathcal{T}) \subseteq \operatorname{Traces}\left(\mathcal{T}^{\prime}\right)$ means \mathcal{T} "is a correct implementation of" \mathcal{T}^{\prime}.
$\hookrightarrow \mathcal{T}$ is seen as a refinement/implementation of the more abstract model \mathcal{T}^{\prime}.

Theorem: trace inclusion and LT properties

Let \mathcal{T} and \mathcal{T}^{\prime} be two TSs without terminal states and with the same set of propositions $A P$. The following statements are equivalent:
(a) $\operatorname{Traces}(\mathcal{T}) \subseteq \operatorname{Traces}\left(\mathcal{T}^{\prime}\right)$
(b) For any LT property $P: \mathcal{T}^{\prime} \models P \Longrightarrow \mathcal{T} \models P$.

Trace inclusion and trace equivalence (5/6)

Trace inclusion (cont'd) and equivalence
Thus, trace inclusion preserves LTL properties.
\triangleright Useful when refining systems: automatic proof of correctness for the refined system.
We can go further and consider trace equivalence.

Theorem: trace equivalence and LT properties

Let \mathcal{T} and \mathcal{T}^{\prime} be two TSs without terminal states and with the same set of propositions $A P$. Then:

$$
\operatorname{Traces}(\mathcal{T}) \underset{\Downarrow}{\Downarrow} \operatorname{Traces}\left(\mathcal{T}^{\prime}\right)
$$

\mathcal{T} and \mathcal{T}^{\prime} satisfy the same LT properties.
But, testing trace inclusion/equivalence is costly!
\triangleright PSPACE-complete (i.e., in pratice requires exponential time).

Trace inclusion and trace equivalence (6/6)

Example

Trace-equivalent systems [BK08].
For $A P=\{$ pay, soda, beer $\}$, those TSs are trace-equivalent.
\hookrightarrow They are indistinguishable by LT properties.

1 Transition systems

2 Comparing TSs: why, how, graph isomorphism, trace equivalence

3 Bisimulation

4 Simulation

Idea

Goal

Identify TSs with the same branching structure.

Intuitively: \mathcal{T} is bisimilar to \mathcal{T}^{\prime} if both TSs can simulate each other in a mutual, stepwise manner.

Definition

Definition: bisimulation equivalence

Let $\mathcal{T}_{i}=\left(S_{i}, A c t_{i}, \longrightarrow_{i}, I_{i}, A P, L_{i}\right), i=1,2$, be TSs over $A P$.
A bisimulation for $\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)$ is a binary relation $\mathcal{R} \subseteq S_{1} \times S_{2}$ s.t.
(A) $\forall s_{1} \in I_{1}, \exists s_{2} \in I_{2},\left(s_{1}, s_{2}\right) \in \mathcal{R}$ and
$\forall s_{2} \in I_{2}, \exists s_{1} \in I_{1},\left(s_{1}, s_{2}\right) \in \mathcal{R}$
(B) for all $\left(s_{1}, s_{2}\right) \in \mathcal{R}$ it holds:
(1) $L_{1}\left(s_{1}\right)=L_{2}\left(s_{2}\right)$
(2) $s_{1}^{\prime} \in \operatorname{Post}\left(s_{1}\right) \Longrightarrow\left(\exists s_{2}^{\prime} \in \operatorname{Post}\left(s_{2}\right) \wedge\left(s_{1}^{\prime}, s_{2}^{\prime}\right) \in \mathcal{R}\right)$
(3) $s_{2}^{\prime} \in \operatorname{Post}\left(s_{2}\right) \Longrightarrow\left(\exists s_{1}^{\prime} \in \operatorname{Post}\left(s_{1}\right) \wedge\left(s_{1}^{\prime}, s_{2}^{\prime}\right) \in \mathcal{R}\right)$.
\mathcal{T}_{1} and \mathcal{T}_{2} are bisimulation-equivalent, or bisimilar, denoted $\mathcal{T}_{1} \sim \mathcal{T}_{2}$, if there exists a bisimulation \mathcal{R} for $\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)$.

Illustration

Conditions (B.2) and (B.3) of bisimulation equivalence [BK08].

Examples

Bisimilar beverage vending machines [BK08].
\triangleright Intuitively, the additional option to deliver beer in \mathcal{T}_{2} is not observable by users.
\hookrightarrow Equivalence in terms of observable behaviors.

Examples

Bisimilar beverage vending machines [BK08].
Bisimulation $\mathcal{R}=\left\{\left(s_{0}, t_{0}\right),\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right),\left(s_{2}, t_{3}\right),\left(s_{3}, t_{4}\right)\right\}$. \Longrightarrow Blackboard proof.

Examples (cont'd)

Non-bisimilar beverage vending machines [BK08].
State s_{1} cannot be mimicked! Candidates are u_{1} and u_{2} but they do not satisfy condition (B.2).
$\triangleright u_{1} \nrightarrow$ soda and $u_{2} \nrightarrow$ beer.
$\triangleright \mathcal{T}_{1} \nsim \mathcal{T}_{3}$ for $A P=\{$ pay, beer, soda $\}$.

Examples (cont'd)

Non-bisimilar beverage vending machines [BKO8].
What if we take a more abstract labeling $A P=\{$ pay, drink $\}$?
$\triangleright L\left(s_{0}\right)=L\left(t_{0}\right)=\{$ pay $\}, L\left(s_{1}\right)=L\left(u_{1}\right)=L\left(u_{2}\right)=\emptyset$, all other labels $=\{d r i n k\}$.

Examples (cont'd)

Non-bisimilar beverage vending machines [BKO8].
Then, bisimulation $\mathcal{R}=\left\{\left(s_{0}, u_{0}\right),\left(s_{1}, u_{1}\right),\left(s_{1}, u_{2}\right),\left(s_{2}, u_{3}\right),\left(s_{2}, u_{4}\right)\right.$, $\left.\left(s_{3}, u_{3}\right),\left(s_{3}, u_{4}\right)\right\}$.
$\triangleright \mathcal{T}_{1} \sim \mathcal{T}_{3}$ for $A P=\{$ pay, drink $\}$.

Properties (1/3)

Equivalence

Bisimulation is an equivalence relation

For a fixed set $A P$ of propositions, the bisimulation relation \sim is an equivalence relation, i.e., it is reflexive, transitive and symmetric.

- Reflexivity: $\mathcal{T} \sim \mathcal{T}$.

■ Transitivity: $\mathcal{T} \sim \mathcal{T}^{\prime} \wedge \mathcal{T}^{\prime} \sim \mathcal{T}^{\prime \prime} \Longrightarrow \mathcal{T} \sim \mathcal{T}^{\prime \prime}$.
■ Symmetry: $\mathcal{T} \sim \mathcal{T}^{\prime} \Longleftrightarrow \mathcal{T}^{\prime} \sim \mathcal{T}$.
\Longrightarrow Exercise.

Properties (2/3)

Linear-time properties

Bisimulation and trace equivalence

$\mathcal{T}_{1} \sim \mathcal{T}_{2} \Longrightarrow \operatorname{Traces}\left(\mathcal{T}_{1}\right)=\operatorname{Traces}\left(\mathcal{T}_{2}\right)$
$\hookrightarrow \mathcal{T}_{1}$ and \mathcal{T}_{2} satisfy the same LT properties.
\hookrightarrow Will be an interesting alternative to trace equivalence complexity-wise as bisimulation can be checked in polynomial time.

The converse is false!
\hookrightarrow Recall previous example of non-bisimilar beverage vending machines (same language but not bisimilar).

Properties (3/3)

Branching-time properties

One can show that bisimulation also preserves branching-time properties (e.g., CTL).

Quotienting (1/7)
 Idea

Idea

1 See bisimulation as a relation between states of a single TS.
2 Quotient the TS by this relation.
\triangleright Obtain a smaller TS that preserves properties.
3 Model check the smaller TS.
\triangleright More efficient! (quotienting is "cheap" in comparison to model checking)

Quotienting (2/7)

Bisimulation on states

Definition: bisimulation equivalence as a relation on states

Let $\mathcal{T}=(S, A c t, \longrightarrow, I, A P, L)$ be a TS. A bisimulation for \mathcal{T} is a binary relation \mathcal{R} on $S \times S$ s.t. for all $\left(s_{1}, s_{2}\right) \in \mathcal{R}$:
(1) $L\left(s_{1}\right)=L\left(s_{2}\right)$
(2) $s_{1}^{\prime} \in \operatorname{Post}\left(s_{1}\right) \Longrightarrow\left(\exists s_{2}^{\prime} \in \operatorname{Post}\left(s_{2}\right) \wedge\left(s_{1}^{\prime}, s_{2}^{\prime}\right) \in \mathcal{R}\right)$
(3) $s_{2}^{\prime} \in \operatorname{Post}\left(s_{2}\right) \Longrightarrow\left(\exists s_{1}^{\prime} \in \operatorname{Post}\left(s_{1}\right) \wedge\left(s_{1}^{\prime}, s_{2}^{\prime}\right) \in \mathcal{R}\right)$.

States s_{1} and s_{2} are bisimulation-equivalent, or bisimilar, denoted $s_{1} \sim_{\mathcal{T}} s_{2}$, if there exists a bisimulation \mathcal{R} for \mathcal{T} with $\left(s_{1}, s_{2}\right) \in \mathcal{R}$.

Remark: equivalent to $\mathcal{T}_{1} \sim \mathcal{T}_{2}$ with $\mathcal{T}_{1}=\mathcal{T}_{2}=\mathcal{T}$.
Remark: $\sim_{\mathcal{T}}$ is the coarsest bisimulation for \mathcal{T} (i.e., yielding the largest \mathcal{R}, i.e., the fewer equivalence classes).

Quotienting (3/7)

Notations

Let S be a set and \mathcal{R} an equivalence on S.
$\square \mathcal{R}$-equivalence class of $s \in S:[s]_{\mathcal{R}}=\left\{s^{\prime} \in S \mid\left(s, s^{\prime}\right) \in \mathcal{R}\right\}$.
$\triangleright \forall s^{\prime} \in[s]_{\mathcal{R}},\left[s^{\prime}\right]_{\mathcal{R}}=[s]_{\mathcal{R}}$.

- Quotient space of S under $\mathcal{R}: S / \mathcal{R}=\left\{[s]_{\mathcal{R}} \mid s \in S\right\}$.
\triangleright Set of all \mathcal{R}-equivalence classes.

Quotienting (4/7)

Bisimulation quotient
For simplicity, we write \sim for $\sim_{\mathcal{T}}$ in the following.

Quotient

Let $\mathcal{T}=(S, A c t, \longrightarrow, I, A P, L)$ be a TS with (coarsest) bisimulation \sim. The bisimulation quotient of \mathcal{T} is defined by

$$
\mathcal{T} / \sim=\left(S / \sim,\{\tau\}, \longrightarrow^{\prime}, I^{\prime}, A P, L^{\prime}\right)
$$

where:

$$
\begin{aligned}
& \square I^{\prime}=\left\{[s]_{\sim} \mid s \in I\right\}, \\
& \square s \xrightarrow{\alpha} s^{\prime} \Longrightarrow[s]_{\sim} \xrightarrow{\tau}\left[s^{\prime}\right]_{\sim}, \\
& -L^{\prime}\left([s]_{\sim}\right)=L(s) .
\end{aligned}
$$

It is easily shown that $\mathcal{T} \sim \mathcal{T} / \sim$.

Quotienting (5/7)

Illustration

TS \mathcal{T} (all labels $=\emptyset$)

Bisimulation quotient \mathcal{T} / \sim

Each color $=$ one \mathcal{R}-equivalence class.
\Longrightarrow Blackboard explanation: \mathcal{R} is a bisimulation and quotienting.

Quotienting (6/7)

Example: many orinters (1/2)

$T S \mathcal{T}_{3}$ for three printers [BK08].
System composed of n printers with two states: ready and print.
\hookrightarrow Entire system $\mathcal{T}_{n}=$ Printer $||\ldots \|| |$ Printer.

Quotienting (6/7)

Example: many orinters (1/2)

$T S \mathcal{T}_{3}$ for three printers [BK08].
$\triangleright A P=\{0,1, \ldots, n\}$ (number of ready printers).
$\triangleright\left|\mathcal{T}_{n}\right|=2^{n} \Longrightarrow$ exponential! \Longrightarrow let's quotient it!

Quotienting (7/7)

Example: many printers (2/2)

Bisimulation quotient $\mathcal{T}_{3} / \sim[B K 08]$.
$\triangleright \mathcal{R}$-equivalence classes based on number of available printers.
$\triangleright\left|\mathcal{T}_{n} / \sim\right|=n+1 . \Longrightarrow$ now only linear!
Quotienting can lead to huge gain in the model size while preserving needed properties.
\Longrightarrow powerful abstraction mechanism.
It can even help in reducing infinite TSs to finite quotients. See bakery algorithm example in the book.

Quotienting algorithm (1/11)
 Sketch

Goal

Given a TS $\mathcal{T}=(S, A c t, \longrightarrow, I, A P, L)$, compute its bisimulation quotient \mathcal{T} / \sim.

Partition-refinement technique.

\hookrightarrow Partition state space S in blocks: pairwise disjoint sets of states.

1 Start with a straightforward initial partition.
2 Refine iteratively up to the point where each block only contains bisimilar states.

Quotienting algorithm (2/11)

Partitions and blocks

Definition: partition

A partition of S is a set $\Pi=\left\{B_{1}, \ldots, B_{k}\right\}$ such that

- $\forall i, B_{i} \neq \emptyset$,

■ $\forall i, j, i \neq j, \quad B_{i} \cap B_{j}=\emptyset$,

- $S=\bigcup_{1 \leq i \leq k} B_{i}$.

Definition: block and superblock

$B_{i} \in \Pi$ is called a block. A superblock of Π is a set $C \subseteq S$ such that $C=B_{i_{1}} \cup \ldots \cup B_{i_{i}}$, for some $B_{i_{1}}, \ldots, B_{i_{l}} \in \Pi$.

A partition Π is finer than Π^{\prime} if $\forall B \in \Pi, \exists B^{\prime} \in \Pi^{\prime}, B \subseteq B^{\prime}$.
\hookrightarrow Each block of Π^{\prime} (coarser) is the disjoint union of blocks in Π.
\triangleright Strictly finer if $\Pi \neq \Pi^{\prime}$.

Quotienting algorithm (3/11)

Partitions and equivalences
$\square \mathcal{R}$ is an equivalence on $S \Longrightarrow S / \mathcal{R}$ is a partition of S.
■ $\Pi=\left\{B_{1}, \ldots, B_{k}\right\}$ is a partition of $S \Longrightarrow \mathcal{R}_{\Pi}$ is an equivalence relation

$$
\begin{aligned}
\mathcal{R}_{\Pi} & =\left\{\left(s, s^{\prime}\right) \mid \exists B_{i} \in \Pi, s \in B_{i} \wedge s^{\prime} \in B_{i}\right\} \\
& =\left\{\left(s, s^{\prime}\right) \mid[s]_{\Pi}=\left[s^{\prime}\right]_{\Pi}\right\} .
\end{aligned}
$$

- $S / \mathcal{R}_{\Pi}=\Pi$.

Quotienting algorithm (4/11)

Partition-refinement: key steps

Goal: iteratively compute a partition of S.
1 Initial partition: $\Pi_{0}=\Pi_{A P}=S / \mathcal{R}_{A P}$ with

$$
\mathcal{R}_{A P}=\left\{\left(s, s^{\prime}\right) \in S \times S \mid L(s)=L\left(s^{\prime}\right)\right\}
$$

\triangleright Group states with identical labels $\Longrightarrow \mathcal{R}_{A P} \supseteq \sim$.
2 Repeat $\Pi_{i+1}=\operatorname{Refine}\left(\Pi_{i}\right)$ until stabilization.
\triangleright Loop invariant: Π_{i} is coarser than S / \sim and finer than $\{S\}$.
3 Return Π_{i}.
\triangleright Termination: $S \times S \supseteq \mathcal{R}_{\Pi_{0}} \supsetneq \mathcal{R}_{\Pi_{1}} \supsetneq \mathcal{R}_{\Pi_{2}} \supsetneq \ldots \supsetneq \mathcal{R}_{\Pi_{i}}=\sim$.

Quotienting algorithm (5/11)

Coarsest partition

Theorem

S / \sim is the coarsest partition Π of S such that:
(i) Π is finer than $\Pi_{0}=\Pi_{A P}$,
(ii) $\forall B, B^{\prime} \in \Pi, B \cap \operatorname{Pre}\left(B^{\prime}\right)=\emptyset \vee B \subseteq \operatorname{Pre}\left(B^{\prime}\right)$.

Moreover, if Π satisfies (ii), then it is also the case that $B \cap \operatorname{Pre}(C)=\emptyset \vee B \subseteq \operatorname{Pre}(C)$ for all blocks $B \in \Pi$ and all superblocks C of Π.

Intuitively, (ii) says that if one state in B may lead to B^{\prime}, then all of them must also allow it (otherwise they would not be bisimilar).
\Longrightarrow The partition-refinement algorithm will lead to the coarsest partition satisfying (i) and (ii), hence to S / \sim.

Quotienting algorithm (6/11)

Refinement operator

> Definition: refinement operator
> $\operatorname{Refine}(\Pi, C)=\bigcup_{B \in \Pi} \operatorname{Refine}(B, C)$ for C a superblock of Π.
> $\operatorname{Refine}(B, C)=\{B \cap \operatorname{Pre}(C), B \backslash \operatorname{Pre}(C)\} \backslash\{\emptyset\}$.

block B
superblock C
Refinement operator [BK08].

Quotienting algorithm (7/11)

Refinement operator: properties

Correctness

For Π finer than $\Pi_{A P}$ and coarser than S / \sim, we have that:
(a) Refine $(\Pi, С)$ is finer than Π,
(b) Refine (Π, C) is coarser than S / \sim.

Termination criterion

For Π finer than $\Pi_{A P}$ and coarser than S / \sim, we have that:
Π is strictly coarser than S / \sim
I
\exists a splitter for Π.
\Longrightarrow When no more splitters, we are done: $\Pi_{i}=S / \sim$.

Quotienting algorithm (8/11)

Splitters

Definitions: splitter, stability

Let Π be a partition of S and C a superblock of Π.

- C is a splitter of Π if $\exists B \in \Pi$ such that

$$
B \cap \operatorname{Pre}(C) \neq \emptyset \wedge B \backslash \operatorname{Pre}(C) \neq \emptyset .
$$

- $B \in \Pi$ is stable w.r.t. C if

$$
B \cap \operatorname{Pre}(C)=\emptyset \vee B \backslash \operatorname{Pre}(C)=\emptyset .
$$

■ Π is stable w.r.t. C if all $B \in \Pi$ are stable w.r.t. C.

Quotienting algorithm (9/11)

Algorithm (sketch)

```
Input: TS \mathcal{T}=(S,Act,\longrightarrow,I,AP,L)
Output: bisimulation quotient state space S/~
    \Pi : = \Pi _ { A P }
    while }\exists\mathrm{ a splitter for }\Pi\mathrm{ do
        choose a splitter C for \Pi
        \Pi:= Refine(\Pi, С) {Refine(\Pi, С) is strictly finer than \Pi}
    return П
```

\Longrightarrow Blackboard illustration on previous example.

Quotienting algorithm (10/11)

Illustration (summary)

TS \mathcal{T} (all labels $=\emptyset$)

Bisimulation quotient \mathcal{T} / \sim

- $\Pi_{0}:=\Pi_{A P}=\{S\}$

■ $C=S, \Pi:=\operatorname{Refine}(\Pi, C)=\left\{\left\{s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right\},\left\{s_{6}\right\}\right\}$
■ $C=\left\{s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right\}, \Pi:=\left\{\left\{s_{1}, s_{2}, s_{3}\right\},\left\{s_{4}, s_{5}\right\},\left\{s_{6}\right\}\right\}$
■ No more splitters $\Longrightarrow \Pi=S / \sim$

Quotienting algorithm (11/11)

How should we choose splitters?

What is a good splitter candidate for Π_{i+1} ?
1 Simple strategy: use any block of Π_{i} as candidate.
\hookrightarrow Complexity of whole algorithm: $\mathcal{O}(|S| \cdot(|A P|+M)$), with M the number of edges.

2 Advanced strategy: use only "smaller" blocks of Π_{i} as candidates and apply "simultaneous" refinement.
\hookrightarrow Complexity of whole algorithm: $\mathcal{O}(|S| \cdot|A P|+M \cdot \log |S|)$, with M the number of edges.
\Longrightarrow See book for more on the advanced strategy.

Equivalence checking through quotienting (1/2)

Idea

Let \mathcal{T}_{1} and \mathcal{T}_{2} be two TSs. The partition-refinement algorithm can be used to check if $\mathcal{T}_{1} \sim \mathcal{T}_{2}$.

Procedure:

1 Compute the composite $\mathrm{TS} \mathcal{T}=\mathcal{T}_{1} \oplus \mathcal{T}_{2}$ defined as

$$
\mathcal{T}:=\left(S_{1} \uplus S_{2}, A c t_{1} \cup A c t_{2}, \longrightarrow_{1} \cup \longrightarrow_{2}, I_{1} \cup I_{2}, A P, L\right)
$$

with $L(s)=L_{i}(s)$ if $s \in S_{i}$.
2 Compute S / \sim, the bisimulation quotient space of \mathcal{T}.
3 Check if, for all bisimulation equivalence class C of \mathcal{T},

$$
C \cap I_{1}=\emptyset \Longleftrightarrow C \cap I_{2}=\emptyset
$$

4 The answer is Yes if and only if $\mathcal{T}_{1} \sim \mathcal{T}_{2}$.

Equivalence checking through quotienting (2/2)

Complexity
Total complexity:

$$
\mathcal{O}\left(\left(\left|S_{1}\right|+\left|S_{2}\right|\right) \cdot|A P|+\left(M_{1}+M_{2}\right) \cdot \log \left(\left|S_{1}\right|+\left|S_{2}\right|\right)\right)
$$

where M_{i} is the number of edges of \mathcal{T}_{i}.
\Longrightarrow Polynomial-time whereas trace equivalence is PSPACE-complete.

\Longrightarrow Much more efficient!

But recall that:

> bisimulation
> $\Downarrow \nVdash$
> trace equivalence
\Longrightarrow Sound but incomplete way to check trace equivalence.

1 Transition systems

2 Comparing TSs: why, how, graph isomorphism, trace equivalence

3 Bisimulation

4 Simulation

Idea

Bisimulation $s_{1} \sim s_{2}$.

- Equivalence relation.
- Identical stepwise behavior.

Simulation $s_{1} \preceq s_{2}$.

■ Preorder (i.e., reflexive, transitive).

- s_{2} simulates s_{1} :
$\triangleright s_{2}$ can mimic all stepwise behavior of s_{1},
\triangleright the reverse $\left(s_{2} \preceq s_{1}\right)$ is not guaranteed.
$\hookrightarrow s_{2}$ may perform transitions that s_{1} cannot match.

Simulation \Longrightarrow implementation relation, e.g., $\mathcal{T} \preceq \mathcal{T}_{f}$, with \mathcal{T}_{f} an abstraction of \mathcal{T}, i.e., \mathcal{T} correctly implements \mathcal{T}_{f}.

Definition

Definition: simulation preorder

Let $\mathcal{T}_{i}=\left(S_{i}, A c t_{i}, \longrightarrow_{i}, I_{i}, A P, L_{i}\right), i=1,2$, be TSs over $A P$.
A simulation for ($\mathcal{T}_{1}, \mathcal{T}_{2}$) is a binary relation $\mathcal{R} \subseteq S_{1} \times S_{2}$ s.t.
(A) $\forall s_{1} \in I_{1}, \exists s_{2} \in I_{2},\left(s_{1}, s_{2}\right) \in \mathcal{R}$
(B) for all $\left(s_{1}, s_{2}\right) \in \mathcal{R}$ it holds:
(1) $L_{1}\left(s_{1}\right)=L_{2}\left(s_{2}\right)$
(2) $s_{1}^{\prime} \in \operatorname{Post}\left(s_{1}\right) \Longrightarrow\left(\exists s_{2}^{\prime} \in \operatorname{Post}\left(s_{2}\right) \wedge\left(s_{1}^{\prime}, s_{2}^{\prime}\right) \in \mathcal{R}\right)$
\mathcal{T}_{1} is simulated by \mathcal{T}_{2}, or equivalently \mathcal{T}_{2} simulates \mathcal{T}_{1}, denoted $\mathcal{T}_{1} \preceq \mathcal{T}_{2}$, if there exists a simulation \mathcal{R} for $\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)$.

Observe that bisimulations are also simulations but not the opposite.

Example

Beverage vending machines [BK08].
Recall that those machines, here called \mathcal{T} and \mathcal{T}^{\prime}, were shown to be non-bisimilar before for $A P=\{$ pay, beer, soda $\}$.

What about simulation?

Example

Beverage vending machines [BK08].
The left one simulates the other: $\mathcal{T}^{\prime} \preceq \mathcal{T}$.

$$
\begin{aligned}
& \mathcal{R}=\left\{\left(u_{0}, s_{0}\right),\left(u_{1}, s_{1}\right),\left(u_{2}, s_{1}\right),\left(u_{3}, s_{2}\right),\left(u_{4}, s_{3}\right)\right\} \\
& \Longrightarrow \text { Blackboard proof. }
\end{aligned}
$$

Example

Beverage vending machines [BK08].
The right one does not simulate the other: $\mathcal{T} \npreceq \mathcal{T}^{\prime}$.
\hookrightarrow State s_{1} cannot be mimicked! Candidates are u_{1} and u_{2} but they do not satisfy condition (B.2).
$\triangleright u_{1} \nrightarrow$ soda and $u_{2} \nrightarrow$ beer.
$\triangleright \mathcal{T} \npreceq \mathcal{T}^{\prime}$ for $A P=\{$ pay, beer, soda $\}$.

Example

Beverage vending machines [BK08].
What if we take a more abstract labeling $A P=\{$ pay, drink $\}$?
$\triangleright L\left(s_{0}\right)=L\left(t_{0}\right)=\{$ pay $\}, L\left(s_{1}\right)=L\left(u_{1}\right)=L\left(u_{2}\right)=\emptyset$, all others labels $=\{$ drink $\}$.

Example

Beverage vending machines [BK08].
Then, $\mathcal{T}^{\prime} \preceq \mathcal{T}$ and $\mathcal{T} \preceq \mathcal{T}^{\prime}$ using

$$
\begin{aligned}
\mathcal{R} & =\left\{\left(u_{0}, s_{0}\right),\left(u_{1}, s_{1}\right),\left(u_{2}, s_{1}\right),\left(u_{3}, s_{2}\right),\left(u_{4}, s_{3}\right)\right\} \\
\text { and } \mathcal{R}^{\prime} & =\left\{\left(s_{0}, u_{0}\right),\left(s_{1}, u_{1}\right),\left(s_{2}, u_{3}\right),\left(s_{3}, u_{3}\right)\right\}
\end{aligned}
$$

Example

Beverage vending machines [BK08].
Then, $\mathcal{T}^{\prime} \preceq \mathcal{T}$ and $\mathcal{T} \preceq \mathcal{T}^{\prime}$ using

$$
\begin{aligned}
\mathcal{R} & =\left\{\left(u_{0}, s_{0}\right),\left(u_{1}, s_{1}\right),\left(u_{2}, s_{1}\right),\left(u_{3}, s_{2}\right),\left(u_{4}, s_{3}\right)\right\} \\
\text { and } \mathcal{R}^{\prime} & =\left\{\left(s_{0}, u_{0}\right),\left(s_{1}, u_{1}\right),\left(s_{2}, u_{3}\right),\left(s_{3}, u_{3}\right)\right\}
\end{aligned}
$$

Error in book: \mathcal{R}^{-1} does not work for $\mathcal{T} \preceq \mathcal{T}^{\prime} \Longrightarrow$ exercise.

Properties

Simulation is a preorder

For a fixed set $A P$ of propositions, the simulation relation \preceq is reflexive and transitive.

■ Reflexivity: $\mathcal{T} \preceq \mathcal{T}$.

- Transitivity: $\mathcal{T} \preceq \mathcal{T}^{\prime} \wedge \mathcal{T}^{\prime} \preceq \mathcal{T}^{\prime \prime} \Longrightarrow \mathcal{T} \preceq \mathcal{T}^{\prime \prime}$.
\Longrightarrow Exercise.

Abstraction (1/4)

Concept
Let \mathcal{T} be a TS.
■ If \mathcal{T}^{\prime} is obtained from \mathcal{T} by removing transitions (e.g., resolving non-determinism), then $\mathcal{T}^{\prime} \preceq \mathcal{T}$.
$\hookrightarrow \mathcal{T}^{\prime}$ is a refinement of \mathcal{T}.

- If \mathcal{T}^{\prime} is obtained from \mathcal{T} by abstraction, then $\mathcal{T} \preceq \mathcal{T}^{\prime}$.

Abstraction: idea

Represent a set of concrete states (with identical labels) using a unique abstract state, through an abstraction function $f: S \rightarrow \widehat{S}$.

Abstraction function

$f: S \rightarrow \widehat{S}$ is an abstraction function if

$$
f(s)=f\left(s^{\prime}\right) \Longrightarrow L(s)=L\left(s^{\prime}\right) .
$$

Abstraction (2/4)

Usefulness

■ From concrete states S to abstract states \widehat{S} s.t. $|\widehat{S}| \lll|S|$.
\hookrightarrow Goal: more efficient model checking.
■ Useful for data abstraction, predicate abstraction, localization reduction.

\Longrightarrow See book for formal discussion.

Here, example of an automatic door opener.
\triangleright Three-digit code, two errors allowed before alarm.

Abstraction (3/4)

Example: automatic door opener (1/2)

Abstract TS [BK08].
Automatic door opener [BK08].
First abstraction: group by number of errors $\{\leq 1,2\}$.
By construction, $\mathcal{T} \preceq \mathcal{T}_{f}$.

Abstraction (4/4)

Example: automatic door opener (2/2)

Abstract TS [BK08].

Automatic door opener [BK08].
Second abstraction: complete abstraction of the number of errors.
\hookrightarrow Coarser abstraction \Longrightarrow smaller TS.
By construction, $\mathcal{T} \preceq \mathcal{T}_{f}$.

Simulation equivalence

Definition: simulation equivalence

TSs \mathcal{T}_{1} and \mathcal{T}_{2} are simulation-equivalent, or similar, denoted $\mathcal{T}_{1} \simeq \mathcal{T}_{2}$, if $\mathcal{T}_{1} \preceq \mathcal{T}_{2}$ and $\mathcal{T}_{2} \preceq \mathcal{T}_{1}$.

Simulation is coarser than bisimulation:

$$
\begin{gathered}
\mathcal{T}_{1} \simeq \mathcal{T}_{2} \\
\nVdash \Uparrow \\
\mathcal{T}_{1} \sim \mathcal{T}_{2}
\end{gathered}
$$

Example

Similar but not bisimilar TSs [BK08].
$\mathcal{T}_{1} \simeq \mathcal{T}_{2}$

$$
\begin{aligned}
& \triangleright \mathcal{T}_{1} \preceq \mathcal{T}_{2}: \mathcal{R}_{1}=\left\{\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right),\left(s_{3}, t_{2}\right),\left(s_{4}, t_{3}\right),\left(s_{5}, t_{4}\right)\right\} . \\
& \triangleright \mathcal{T}_{2} \preceq \mathcal{T}_{1}: \mathcal{R}_{2}=\left\{\left(t_{1}, s_{1}\right),\left(t_{2}, s_{3}\right),\left(t_{3}, s_{4}\right),\left(t_{4}, s_{5}\right)\right\} .
\end{aligned}
$$

Example

Similar but not bisimilar TSs [BK08].
$\mathcal{T}_{1} \simeq \mathcal{T}_{2}$ but $\mathcal{T}_{1} \nsim \mathcal{T}_{2}$
\triangleright Only candidate to mimic s_{2} is t_{2} but $t_{2} \rightarrow t_{4}$ cannot be mimicked by s_{2}.

Example

Similar but not bisimilar TSs [BK08].
$\mathcal{T}_{1} \simeq \mathcal{T}_{2}$ but $\mathcal{T}_{1} \nsim \mathcal{T}_{2}$. The difference is that:
\triangleright For \simeq, we can use two \neq relations \mathcal{R}_{1} and \mathcal{R}_{2}.
\triangleright For \sim, we need to use the same relation in both directions!

Quotienting (1/3)

Idea

Idea

1 As for bisimulation, see simulation as a relation between states of a single TS.
2 Quotient the TS by this relation.
\triangleright Obtain a smaller TS that preserves properties.
3 Model check the smaller TS.
\triangleright More efficient! (quotienting is "cheap" in comparison to model checking)

Since simulation is coarser than bisimulation, the simulation quotient will be a better abstraction, i.e., $|S / \simeq| \leq|S / \sim|$.
Still, simulation only preserves a smaller fragment of CTL, while bisimulation preserves the whole logic.
\Longrightarrow If sufficient, use the simulation quotient.

Quotienting (2/3)

Simulation on states

Definition: simulation preorder as a relation on states

Let $\mathcal{T}=(S, A c t, \longrightarrow, I, A P, L)$ be a TS. A simulation for \mathcal{T} is a binary relation \mathcal{R} on $S \times S$ s.t. for all $\left(s_{1}, s_{2}\right) \in \mathcal{R}$:
(1) $L\left(s_{1}\right)=L\left(s_{2}\right)$
(2) $s_{1}^{\prime} \in \operatorname{Post}\left(s_{1}\right) \Longrightarrow\left(\exists s_{2}^{\prime} \in \operatorname{Post}\left(s_{2}\right) \wedge\left(s_{1}^{\prime}, s_{2}^{\prime}\right) \in \mathcal{R}\right)$.

States s_{1} is simulated by s_{2}, or s_{2} simulates s_{1}, denoted $s_{1} \preceq \mathcal{T} s_{2}$, if there exists a simulation \mathcal{R} for \mathcal{T} with $\left(s_{1}, s_{2}\right) \in \mathcal{R}$. States s_{1} and s_{2} are similar, denoted $s_{1} \simeq \mathcal{T} s_{2}$ if $s_{1} \preceq \mathcal{T} s_{2}$ and $s_{2} \preceq_{\mathcal{T}} s_{1}$.

Remark: $\preceq_{\mathcal{T}}$ is the coarsest simulation for \mathcal{T}.
For simplicity, we write \preceq and \simeq for $\preceq_{\mathcal{T}}$ and $\simeq_{\mathcal{T}}$ in the following.

Quotienting (3/3)

Simulation quotient

Quotient

Let $\mathcal{T}=(S, A c t, \longrightarrow, I, A P, L)$ be a TS. The simulation quotient of \mathcal{T} is defined by

$$
\mathcal{T} / \simeq=\left(S / \simeq,\{\tau\}, \longrightarrow^{\prime}, I^{\prime}, A P, L^{\prime}\right)
$$

where:
■ $I^{\prime}=\left\{[s]_{\simeq} \mid s \in I\right\}$,
■ $s \xrightarrow{\alpha} s^{\prime} \Longrightarrow[s]_{\simeq}{ }^{\tau}{ }^{\prime}\left[s^{\prime}\right]_{\simeq}$,

- $L^{\prime}\left([s]_{\simeq}\right)=L(s)$.

It is easily shown that $\mathcal{T} \simeq \mathcal{T} / \simeq$.

Algorithm for simulation preorder (1/4)

 Goal
Goal

Given a TS $\mathcal{T}=(S, A c t, \longrightarrow, I, A P, L)$, compute the simulation preorder $\preceq_{\mathcal{T}}$ (the coarsest simulation).
\triangleright Can be used to compute \mathcal{T} / \simeq (by looking at states s_{1}, s_{2} such that $s_{1} \preceq s_{2}$ and $s_{2} \preceq s_{1}$).
\triangleright Can be used to check whether $\mathcal{T}_{1} \simeq \mathcal{T}_{2}$ by computing $\mathcal{T}_{1} \oplus \mathcal{T}_{2} / \simeq$ as for bisimulation.

Algorithm for simulation preorder (2/4)

Basic idea

```
Input: \(\mathrm{TS} \mathcal{T}=(S, A c t, \longrightarrow, I, A P, L)\)
Output: simulation preorder \(\preceq_{\mathcal{T}}\)
    \(\mathcal{R}:=\left\{\left(s_{1}, s_{2}\right) \mid L\left(s_{1}\right)=L\left(s_{2}\right)\right\}\)
    while \(\mathcal{R}\) is not a simulation do
        let \(\left(s_{1}, s_{2}\right) \in \mathcal{R}\) s.t. \(s_{1} \rightarrow s_{1}^{\prime} \wedge \nexists s_{2}^{\prime}\) s.t. \(\left(s_{2} \rightarrow s_{2}^{\prime} \wedge\left(s_{1}^{\prime}, s_{2}^{\prime}\right) \in \mathcal{R}\right)\)
        \(\mathcal{R}:=\mathcal{R} \backslash\left\{\left(s_{1}, s_{2}\right)\right\}\)
    return \(\mathcal{R}\)
```

Intuitively, we start with the largest possible approximation (i.e., identical labels) and iteratively remove pairs of states that do not satisfy $s_{1} \preceq s_{2}$ up to obtaining a proper simulation relation. \# iterations bounded by $|S|^{2}$:

$$
S \times S \supseteq \mathcal{R}_{0} \subsetneq \mathcal{R}_{1} \supsetneq \ldots \supsetneq \mathcal{R}_{n}=\preceq \mathcal{T}
$$

Algorithm for simulation preorder (3/4)

Complexity

While straightforward implementation leads to $\mathcal{O}\left(M \cdot|S|^{3}\right)$, clever refinements reduce the complexity of the algorithm to $\mathcal{O}(M \cdot|S|)$.

\Longrightarrow See the book for more details.

\Longrightarrow Blackboard illustration for two TSs.

Algorithm for simulation preorder (4/4)

Illustration (summary)

TS \mathcal{T}_{1}

TS \mathcal{T}_{2}
$\mathcal{T}_{1} \preceq \mathcal{T}_{2}$?
$\triangleright \mathcal{R}_{0}=\left\{\left(s_{0}, t_{0}\right),\left(s_{1}, t_{1}\right),\left(s_{1}, t_{2}\right),\left(s_{2}, t_{3}\right),\left(s_{3}, t_{4}\right)\right\}$
$\triangleright \mathcal{R}_{1}=\left\{\left(s_{0}, t_{0}\right),\left(s_{1}, t_{2}\right),\left(s_{2}, t_{3}\right),\left(s_{3}, t_{4}\right)\right\}$
$\triangleright \mathcal{R}_{2}=\left\{\left(s_{0}, t_{0}\right),\left(s_{2}, t_{3}\right),\left(s_{3}, t_{4}\right)\right\}, \mathcal{R}_{3}=\left\{\left(s_{2}, t_{3}\right),\left(s_{3}, t_{4}\right)\right\}$

Algorithm for simulation preorder (4/4)

Illustration (summary)

TS \mathcal{T}_{1}

$T S \mathcal{T}_{2}$

$$
\mathcal{T}_{1} \preceq \mathcal{T}_{2} ?
$$

$$
\triangleright \mathcal{R}_{4}=\left\{\left(s_{3}, t_{4}\right)\right\}=\preceq
$$

$$
\left(s_{0}, t_{0}\right) \notin \preceq \mathcal{T}_{1} \npreceq \mathcal{T}_{2}
$$

Algorithm for simulation preorder (4/4)

Illustration (summary)

TS \mathcal{T}_{1}

$T S \mathcal{T}_{2}$
$\mathcal{T}_{2} \preceq \mathcal{T}_{1}$?
$\triangleright \mathcal{R}_{0}=\left\{\left(t_{0}, s_{0}\right),\left(t_{1}, s_{1}\right),\left(t_{2}, s_{1}\right),\left(t_{3}, s_{2}\right),\left(t_{4}, s_{3}\right)\right\}=\preceq$
$\left(t_{0}, s_{0}\right) \in \preceq \Longrightarrow \mathcal{T}_{2} \preceq \mathcal{T}_{1}$

Relations between equivalences: summary

Relation between equivalences and preorders on TSs [BK08]: $\mathcal{R} \rightarrow \mathcal{R}^{\prime}$ means that \mathcal{R} is strictly finer than \mathcal{R}^{\prime} (i.e., it is more distinctive).

Other properties of simulation

If \mathcal{T}_{1} and \mathcal{T}_{2} do not have terminal states:
$\triangleright \mathcal{T}_{1} \preceq \mathcal{T}_{2} \Longrightarrow \operatorname{Traces}\left(\mathcal{T}_{1}\right) \subseteq \operatorname{Traces}\left(\mathcal{T}_{2}\right) ;$
\triangleright if \mathcal{T}_{2} satisfies a linear-time property (LTL), then \mathcal{T}_{1} also;
\triangleright if \mathcal{T}_{2} satisfies a branching-time property expressible in $\forall C T L$ or $\exists C T L$ (i.e., strict fragments of CTL), then \mathcal{T}_{1} also.
\Longrightarrow See book for more.

References I

C. Baier and J.-P. Katoen.Principles of model checking. MIT Press, 2008.

