Formal Methods for System Design

Chapter 2: Modeling systems

Mickael Randour

Mathematics Department, UMONS

September 2021

1 Transition systems

2 Comparing TSs: why, how, graph isomorphism, trace equivalence

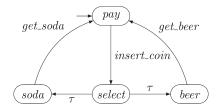
3 Bisimulation

4 Simulation

1 Transition systems

- 2 Comparing TSs: why, how, graph isomorphism, trace equivalence
- 3 Bisimulation
- 4 Simulation

Transition system



Transition system for a (rather stupid) beverage vending machine [BK08].

- Model describing the behavior of a system.
- Directed graphs: vertices = *states*, edges = *transitions*.
- **State**: current mode of the system, current values of program variables, current color of a traffic light...
- Transition as atomic actions: mode switching, execution of a program instruction, change of color...

Formal definition

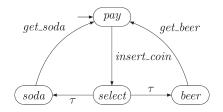
Definition: Transition system (TS)

Tuple $\mathcal{T} = (S, Act, \longrightarrow, I, AP, L)$ with

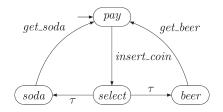
- S the set of states,
- Act the set of actions,
- $\blacksquare \longrightarrow \subseteq S \times Act \times S \text{ the transition relation,}$
- $I \subseteq S$ the set of initial states,
- AP the set of atomic propositions, and
- $L: S \rightarrow 2^{AP}$ the labeling function.

We often consider *finite* TSs, i.e., |S|, |Act|, $|AP| < \infty$, but not necessarily true in general.

Notation: sometimes we write $s \xrightarrow{\alpha} s'$ instead of $(s, \alpha, s') \in \longrightarrow$.



What about the labeling?



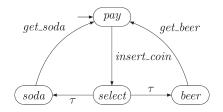
Depends on what we want to model!

- Simple choice: $\forall s, L(s) = \{s\}.$
- Say the property is "the vending machine only delivers a drink after providing a coin"

$$\rightarrow AP = \{paid, drink\}, L(pay) = \emptyset, L(select) = \{paid\} and L(soda) = L(beer) = \{paid, drink\}.$$

\Rightarrow useful to model check logic formulae.

Chapter 2: Modeling systems



- \hookrightarrow When the labeling is not important, we often omit it.
- \hookrightarrow We do the same for actions or simply use *internal actions* (τ) .

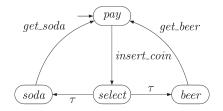
Actions are often used to model communication mechanism (e.g., parallel processes).

Related models

We talk about **transition systems (TSs)** and adopt the definition of [BK08]. Equivalent models are often used in the literature.

- Kripke structure (KS) ~ TS without labels on actions.
- Labeled transition system (LTS) ~ TS without labels on states.

Semantics of TSs: non-determinism



When two actions are possible (*select*), the choice is made **non-deterministically**!

Also true for the initial state if |I| > 1.

 \hookrightarrow Meaningful to model *interleaving* of \parallel executions for example.

 \hookrightarrow Also for *abstraction* or to model an *uncontrollable environment* (here, drink choice by the user).

Basic concepts: predecessors and successors

Let $\mathcal{T} = (S, Act, \longrightarrow, I, AP, L)$ be a TS. For $s \in S$ and $\alpha \in Act$, we define the following sets.

Direct (α -)successors of s:

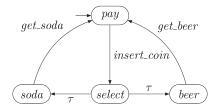
$$Post(s,\alpha) = \left\{ s' \in S \mid s \xrightarrow{\alpha} s' \right\}, \quad Post(s) = \bigcup_{\alpha \in Act} Post(s,\alpha).$$

Direct (α -)predecessors of s:

$$Pre(s, \alpha) = \left\{ s' \in S \mid s' \xrightarrow{\alpha} s \right\}, \quad Pre(s) = \bigcup_{\alpha \in Act} Pre(s, \alpha).$$

+ natural extensions to subsets of S.

Chapter 2: Modeling systems



Some examples:

- *Post*(*select*) = {*soda*, *beer*},
- $Pre(pay, get_beer) = \{beer\},\$

•
$$Post(beer, \tau) = \emptyset.$$

Terminal states

- A state $s \in S$ is called terminal iff $Post(s) = \emptyset$.
 - \hookrightarrow For *reactive systems*, those states should in general be avoided.

 $\Rightarrow \textit{deadlocks}$

Basic concepts: executions (1/2)

Let
$$\mathcal{T} = (S, Act, \longrightarrow, I, AP, L)$$
 be a TS.

Finite execution fragment:

$$\varrho = s_0 \alpha_1 s_1 \alpha_2 \dots \alpha_n s_n$$
 such that $s_0 \xrightarrow{\alpha_1} \dots \xrightarrow{\alpha_n} s_n$.

Infinite execution fragment:

$$\rho = s_0 \alpha_1 s_1 \alpha_2 \dots$$
 such that $s_i \xrightarrow{\alpha_{i+1}} s_{i+1}$ for all $i \ge 0$.

Maximal execution fragment:

Fragment that cannot be prolonged.

Initial execution fragment:

Fragment starting in $s_0 \in I$.

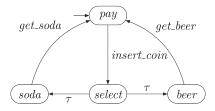
Basic concepts: executions (2/2)

Execution:

Initial and maximal execution fragment.

Reachable states:

$$Reach(\mathcal{T}) = \left\{ s \in S \mid \exists s_0 \in I \land s_0 \xrightarrow{\alpha_1} \dots \xrightarrow{\alpha_n} s_n = s \right\}$$
$$= Post^*(I)$$



Some examples.

Chapter 2: Modeling systems

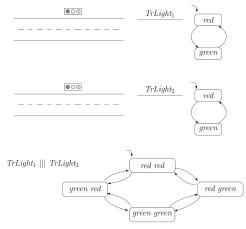
Modeling systems

The reference book [BK08] contains different examples illustrating how to construct formal models from real applications or segments of program code.

 \Rightarrow We survey some of them in the following.

 \Rightarrow Focus on concurrency: prone to errors.

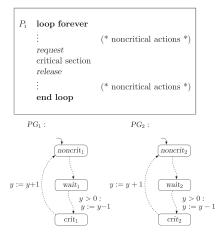
Independent traffic lights on non-intersecting roads



- Concurrency is represented by interleaving.
- Non-deterministic choice between activities of simultaneously acting processes.
- In general, needs to be complemented with fairness assumptions.

Interleaving semantics [BK08].

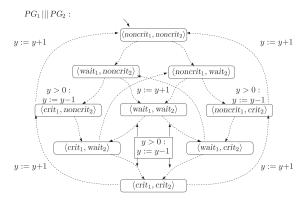
Mutex with semaphores (1/3)



- Program graphs (PGs) retain conditional transitions.
- - $\Rightarrow \text{ Then we consider the TS} \\ \mathcal{T}(PG_1 \parallel PG_2).$

Program graphs for semaphore-based mutex [BK08].

Mutex with semaphores (2/3)

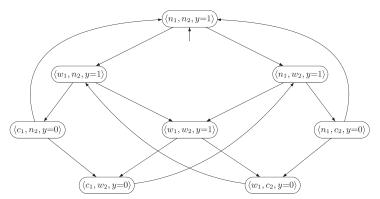


 $PG_1 \parallel PG_2$ for semaphore-based mutex [BK08].

The TS unfolding will tell us if $\langle crit_1, crit_2 \rangle$ is reachable (which we want to avoid obviously).

Chapter 2: Modeling systems

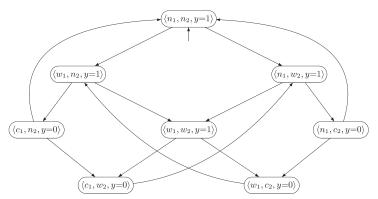
Mutex with semaphores (3/3)



 $\mathcal{T}(PG_1 \parallel PG_2)$ for semaphore-based mutex [BK08].

Mutual exclusion is verified: $\langle c_1, c_2, y = ... \rangle \notin Reach(\mathcal{T}(PG_1 \parallel PG_2)).$

Mutex with semaphores (3/3)

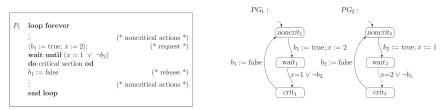


 $\mathcal{T}(PG_1 \parallel PG_2)$ for semaphore-based mutex [BK08].

The scheduling problem in $\langle w_1, w_2, y = 1 \rangle$ is left open. \hookrightarrow implement a discipline later (LIFO, FIFO, etc) or use an algorithm solving the issue explicitly: **Peterson's mutex**.

Chapter 2: Modeling systems

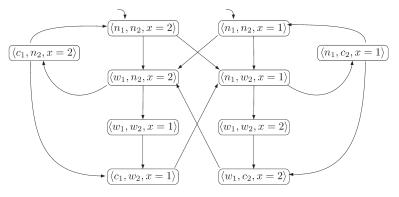
Peterson's mutex algorithm (1/2)



Program graphs for Peterson's mutex [BK08].

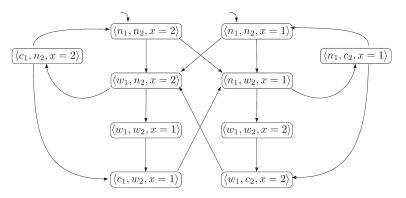
 \Rightarrow The value of x determines who will enter the critical section.

Peterson's mutex algorithm (2/2)



 $\mathcal{T}(PG_1 \parallel PG_2) \text{ for Peterson's mutex [BK08].}$ **Mutual exclusion is verified**: $\langle c_1, c_2, x = \dots \rangle \notin Reach(\mathcal{T}(PG_1 \parallel PG_2)).$

Peterson's mutex algorithm (2/2)



 $\mathcal{T}(PG_1 \parallel PG_2)$ for Peterson's mutex [BK08].

Peterson's also has **bounded waiting**, hence **fairness** is satisfied.

Not true for semaphore-based (without discipline): processes could starve.

Chapter 2: Modeling systems

The state(-space) explosion problem

Verification techniques operate on TSs obtained from programs or program graphs. Their size can be **huge**, or they can even be **infinite**. Some sources:

- Variables
 - ▷ PG with 10 locations, three Boolean variables and five integers in $\{0, ..., 9\}$ already contains $10 \cdot 2^3 \cdot 10^5 = 8.000.000$ states.
 - \triangleright Variable in infinite domain \Rightarrow infinite TS!

Parallelism

$$\triangleright \ \mathcal{T} = \mathcal{T}_1 \parallel \mid \ldots \mid \mid \mathcal{T}_n \ \Rightarrow \ |S| = |S_1| \cdot \ldots \cdot |S_n|.$$

→ Exponential blow-up!

 \Rightarrow Need for (a lot of) abstraction and efficient symbolic techniques (Ch. 5) to keep the verification process tractable.

1 Transition systems

2 Comparing TSs: why, how, graph isomorphism, trace equivalence

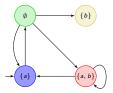
3 Bisimulation

4 Simulation

Why?

- To see if two TSs are *similar*.
 - ▷ Is one a **refinement** or an **abstraction** of the other?
 - ▷ Are the two *indistinguishable* w.r.t. observable properties?
- To be able to *model check large systems*.
 - \triangleright If \mathcal{T}_1 is a small abstraction of \mathcal{T}_2 that preserves the property to be checked, then model checking \mathcal{T}_1 is more efficient!
 - $\hookrightarrow \mbox{ Can help for large or infinite systems: not all complexity is necessary!}$
- What does it mean to preserve a property?
 - Each type of relation preserves a different logical fragment (intuitively, a different kind of properties).
 - \hookrightarrow Depends on what we are interested in.

Linear time vs. branching time semantics (1/2)

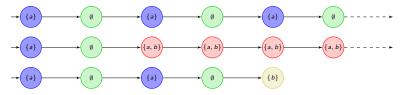


TS T with state labels $AP = \{a, b\}$ (state and action names are omitted).

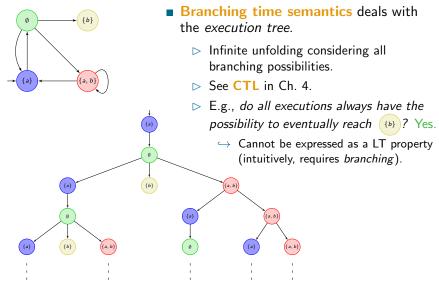
• Linear time semantics deals with *traces* of executions.

- \triangleright The language of (in)finite words described by \mathcal{T} .
- ▷ See LTL in Ch. 3.

 \triangleright E.g., do all executions eventually reach (1)? No.



Linear time vs. branching time semantics (2/2)



Which type of relation between TSs should we use?

Linear time properties (e.g., LTL)

- \Rightarrow Trace equivalence/inclusion is an obvious choice.
- ▲ But language inclusion is costly! (PSPACE-complete)
- → Other relations provide a more efficient alternative (P-complete).
- Branching time semantics (e.g., CTL)
 - ⇒ Bisimulation: related states can mutually mimic all individual transitions.
 - ⇒ Simulation: one state can mimic all stepwise behaviors of the other, but the reverse is not necessary.

In the following, we assume state-based labeling and often that there is no deadlock (~>> self-loops otherwise).

Graph isomorphism (1/2)

Idea: isomorphism up to renaming of the states and actions.

Definition: TS isomorphism

 $\mathcal{T}_1 = (S_1, Act_1, \longrightarrow_1, I_1, AP_1, L_1)$ and $\mathcal{T}_2 = (S_2, Act_2, \longrightarrow_2, I_2, AP_2, L_2)$ are isomorphic if there exists a bijection f such that

• $S_2 = f(S_1),$ • $Act_2 = f(Act_1),$ • $s \xrightarrow{\alpha}_1 s' \iff f(s) \xrightarrow{f(\alpha)}_2 f(s'),$ • $s \in I_1 \iff f(s) \in I_2,$ • $AP_1 = AP_2,$ • $\forall s \in S_1, \ L_1(s) = L_2(f(s)).$

Preserves properties but much too restrictive!

Chapter 2: Modeling systems

Graph isomorphism (2/2)

Those TSs are clearly "equivalent" (i.e., indistinguishable for meaningful properties) but *are not isomorphic*.

 \Rightarrow Graph isomorphism is not interesting for model checking.

Trace inclusion and trace equivalence (1/6) *What is a trace?*

 \triangleright An execution seen through its labeling.

Definition: paths and traces

Let $\mathcal{T} = (S, Act, \rightarrow, I, AP, L)$ be a TS and $\rho = s_0 \alpha_1 s_1 \alpha_2 \dots$ one of its executions:

• its path is
$$\pi = path(\rho) = s_0 s_1 s_2 \dots$$
,

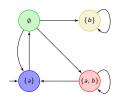
• its trace is
$$trace(\pi) = L(\pi) = L(s_0)L(s_1)L(s_2)\dots$$

We denote $Paths(\mathcal{T})$ (resp. $Traces(\mathcal{T})$) the set of all paths (resp. traces) in \mathcal{T} .

Defined for executions (i.e., maximal and initial fragments), but also for fragments starting in a state s (Paths(s) and Traces(s)) or a subset of states $S' \subseteq S$ (Paths(S') and Traces(S')), as well as for finite fragments ($Paths_{fin}$ and $Traces_{fin}$).

Chapter 2: Modeling systems

Trace inclusion and trace equivalence (2/6)Example



Corresponding traces:

$$trace(\pi_1) = \{a\}\emptyset\{a\}\emptyset\{a\}\emptyset\ldots = (\{a\}\emptyset)^{\omega}$$

$$trace(\pi_2) = \{a\}\emptyset\{a,b\}\{a,b\}\{a,b\}\{a,b\}\ldots = \{a\}\emptyset\{a,b\}^{\omega}$$

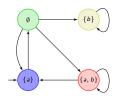
$$trace(\pi_3) = \{a\}\emptyset\{a\}\emptyset\{b\}\{b\}\ldots = \{a\}\emptyset\{a\}\emptyset\{b\}^{\omega}$$

Traces are (infinite) words on alphabet 2^{AP}.

$$\hookrightarrow \text{ alphabet exponential in } |AP|.$$

Chapter 2: Modeling systems

Trace inclusion and trace equivalence (3/6)Example (cont'd)



Which languages does this TS describe?

Finite traces:

$$\mathit{Traces_{fin}}(\mathcal{T}) = \{a\}(\emptyset\{a,b\}^*\{a\})^*\Big[\varepsilon \,\big|\, \emptyset(\{b\}^*|\{a,b\}^*)\Big]$$

Traces:

$$R = (\emptyset\{a, b\}^*\{a\})$$

Traces(\mathcal{T}) = $\{a\}R^*[R^{\omega} | (\emptyset\{a, b\}^{\omega}) | \emptyset\{b\}^{\omega}]$

Chapter 2: Modeling systems

Trace inclusion and trace equivalence (4/6)

Trace inclusion

- Linear-time (LT) properties (e.g., LTL) specify which traces a TS should exhibit.
- Trace inclusion \sim implementation relation.

 $Traces(\mathcal{T}) \subseteq Traces(\mathcal{T}')$ means \mathcal{T} "is a correct implementation of" \mathcal{T}' .

 $\hookrightarrow \ \mathcal{T} \ \text{is seen as a refinement/implementation of the more} \\ \text{abstract model } \mathcal{T}'.$

Theorem: trace inclusion and LT properties

Let \mathcal{T} and \mathcal{T}' be two TSs without terminal states and with the same set of propositions AP. The following statements are equivalent:

(a)
$$\mathit{Traces}(\mathcal{T}) \subseteq \mathit{Traces}(\mathcal{T}')$$

(b) For any LT property $P: \mathcal{T}' \models P \Longrightarrow \mathcal{T} \models P$.

Trace inclusion and trace equivalence (5/6)

Trace inclusion (cont'd) and equivalence

1

Thus, trace inclusion preserves LTL properties.

Useful when refining systems: automatic proof of correctness for the refined system.

We can go further and consider *trace equivalence*.

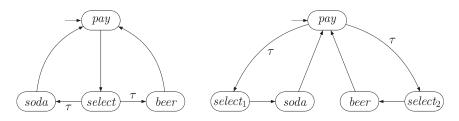
Theorem: trace equivalence and LT properties

Let \mathcal{T} and \mathcal{T}' be two TSs without terminal states and with the same set of propositions AP. Then:

But, testing trace inclusion/equivalence is costly! > PSPACE-complete (i.e., in pratice requires exponential time).

Chapter 2: Modeling systems

Trace inclusion and trace equivalence (6/6)Example



Trace-equivalent systems [BK08]. For $AP = \{pay, soda, beer\}$, those TSs are trace-equivalent. \hookrightarrow They are indistinguishable by LT properties.

1 Transition systems

2 Comparing TSs: why, how, graph isomorphism, trace equivalence

3 Bisimulation

4 Simulation

Idea

Goal

Identify TSs with the same branching structure.

Intuitively: \mathcal{T} is bisimilar to \mathcal{T}' if both TSs can simulate each other in a mutual, stepwise manner.

Definition

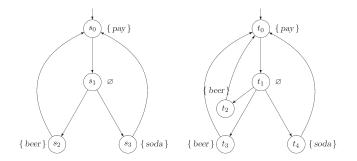
Definition: bisimulation equivalence

Let $\mathcal{T}_i = (S_i, Act_i, \longrightarrow_i, I_i, AP, L_i), i = 1, 2$, be TSs over AP. A bisimulation for $(\mathcal{T}_1, \mathcal{T}_2)$ is a binary relation $\mathcal{R} \subseteq S_1 \times S_2$ s.t. (A) $\forall s_1 \in I_1, \exists s_2 \in I_2, (s_1, s_2) \in \mathcal{R}$ and $\forall s_2 \in I_2, \exists s_1 \in I_1, (s_1, s_2) \in \mathcal{R}$ (B) for all $(s_1, s_2) \in \mathcal{R}$ it holds: (1) $L_1(s_1) = L_2(s_2)$ (2) $s'_1 \in Post(s_1) \Longrightarrow (\exists s'_2 \in Post(s_2) \land (s'_1, s'_2) \in \mathcal{R})$ (3) $s'_2 \in Post(s_2) \Longrightarrow (\exists s'_1 \in Post(s_1) \land (s'_1, s'_2) \in \mathcal{R}).$ \mathcal{T}_1 and \mathcal{T}_2 are bisimulation-equivalent, or *bisimilar*, denoted $\mathcal{T}_1 \sim \mathcal{T}_2$, if there exists a bisimulation \mathcal{R} for $(\mathcal{T}_1, \mathcal{T}_2)$.

Illustration

Conditions (B.2) and (B.3) of bisimulation equivalence [BK08].

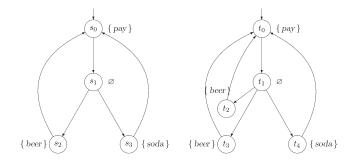
Examples



Bisimilar beverage vending machines [BK08].

- \triangleright Intuitively, the additional option to deliver beer in \mathcal{T}_2 is not observable by users.
- \hookrightarrow Equivalence in terms of observable behaviors.

Examples

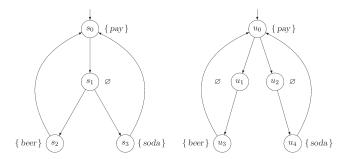


Bisimilar beverage vending machines [BK08].

Bisimulation $\mathcal{R} = \{(s_0, t_0), (s_1, t_1), (s_2, t_2), (s_2, t_3), (s_3, t_4)\}.$

 \implies Blackboard proof.

Examples (cont'd)



Non-bisimilar beverage vending machines [BK08].

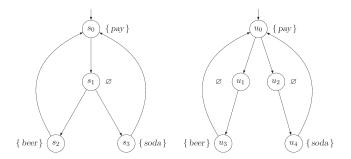
State s_1 cannot be mimicked! Candidates are u_1 and u_2 but they do not satisfy condition (B.2).

$$\triangleright$$
 $u_1 \not\rightarrow soda$ and $u_2 \not\rightarrow beer$.

$$\triangleright \ \mathcal{T}_1 \not\sim \mathcal{T}_3 \text{ for } AP = \{pay, beer, soda\}.$$

Chapter 2: Modeling systems

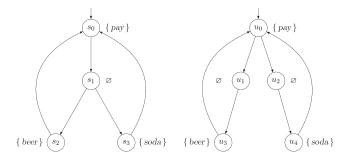
Examples (cont'd)



Non-bisimilar beverage vending machines [BK08].

What if we take a more abstract labeling $AP = \{pay, drink\}$? $\triangleright L(s_0) = L(t_0) = \{pay\}, L(s_1) = L(u_1) = L(u_2) = \emptyset$, all other labels = $\{drink\}$.

Examples (cont'd)



Non-bisimilar beverage vending machines [BK08].

Then, bisimulation $\mathcal{R} = \{(s_0, u_0), (s_1, u_1), (s_1, u_2), (s_2, u_3), (s_2, u_4), (s_3, u_3), (s_3, u_4)\}.$ $\triangleright \mathcal{T}_1 \sim \mathcal{T}_3 \text{ for } AP = \{pay, drink\}.$

 \implies Blackboard proof.

Properties (1/3)

Equivalence

Bisimulation is an equivalence relation

For a fixed set AP of propositions, the bisimulation relation \sim is an equivalence relation, i.e., it is reflexive, transitive and symmetric.

- Reflexivity: $\mathcal{T} \sim \mathcal{T}$.
- Transitivity: $\mathcal{T} \sim \mathcal{T}' \land \mathcal{T}' \sim \mathcal{T}'' \Longrightarrow \mathcal{T} \sim \mathcal{T}''.$
- Symmetry: $\mathcal{T} \sim \mathcal{T}' \iff \mathcal{T}' \sim \mathcal{T}$.

Properties (2/3)

Linear-time properties

Bisimulation and trace equivalence

 $\mathcal{T}_1 \sim \mathcal{T}_2 \implies \mathit{Traces}(\mathcal{T}_1) = \mathit{Traces}(\mathcal{T}_2)$

- \hookrightarrow \mathcal{T}_1 and \mathcal{T}_2 satisfy the same LT properties.
- → Will be an interesting alternative to trace equivalence complexity-wise as bisimulation can be checked in polynomial time.

The converse is false!

→ Recall previous example of non-bisimilar beverage vending machines (same language but not bisimilar).

Properties (3/3)

Branching-time properties

One can show that bisimulation also preserves branching-time properties (e.g., CTL).

Quotienting (1/7)

Quotienting (2/7)

Bisimulation on states

Definition: bisimulation equivalence as a relation on states

Let $\mathcal{T} = (S, Act, \longrightarrow, I, AP, L)$ be a TS. A **bisimulation** for \mathcal{T} is a binary relation \mathcal{R} on $S \times S$ s.t. for all $(s_1, s_2) \in \mathcal{R}$:

(1)
$$L(s_1) = L(s_2)$$

(2) $s'_1 \in Post(s_1) \Longrightarrow (\exists s'_2 \in Post(s_2) \land (s'_1, s'_2) \in$

(3)
$$s'_2 \in Post(s_2) \Longrightarrow (\exists s'_1 \in Post(s_1) \land (s'_1, s'_2) \in \mathcal{R}).$$

States s_1 and s_2 are bisimulation-equivalent, or *bisimilar*, denoted $s_1 \sim_{\mathcal{T}} s_2$, if there exists a bisimulation \mathcal{R} for \mathcal{T} with $(s_1, s_2) \in \mathcal{R}$.

Remark: equivalent to $\mathcal{T}_1 \sim \mathcal{T}_2$ with $\mathcal{T}_1 = \mathcal{T}_2 = \mathcal{T}$.

Remark: $\sim_{\mathcal{T}}$ is the *coarsest bisimulation* for \mathcal{T} (i.e., yielding the largest \mathcal{R} , i.e., the fewer *equivalence classes*).

Chapter 2: Modeling systems

Mickael Randour

 \mathcal{R}

Quotienting (3/7)

Notations

Let S be a set and \mathcal{R} an equivalence on S.

- *R*-equivalence class of *s* ∈ *S*: [*s*]_{*R*} = {*s'* ∈ *S* | (*s*, *s'*) ∈ *R*}.
 ∀*s'* ∈ [*s*]_{*R*}, [*s'*]_{*R*} = [*s*]_{*R*}.
- Quotient space of *S* under \mathcal{R} : $S/\mathcal{R} = \{[s]_{\mathcal{R}} \mid s \in S\}$.

 \triangleright Set of all \mathcal{R} -equivalence classes.

Quotienting (4/7)

Bisimulation quotient

For simplicity, we write \sim for $\sim_{\mathcal{T}}$ in the following.

Quotient

Let $\mathcal{T} = (S, Act, \longrightarrow, I, AP, L)$ be a TS with (coarsest) bisimulation \sim . The **bisimulation quotient** of \mathcal{T} is defined by

$$\mathcal{T}/\!\sim = (S/\!\sim, \{\tau\}, \longrightarrow', I', AP, L')$$

where:

$$I' = \{[s]_{\sim} \mid s \in I\},\$$

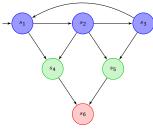
$$s \xrightarrow{\alpha} s' \implies [s]_{\sim} \xrightarrow{\tau} [s']_{\sim},\$$

$$L'([s]_{\sim}) = L(s).$$

It is easily shown that $\mathcal{T} \sim \mathcal{T} / \sim$.

Quotienting (5/7)

Illustration



TS \mathcal{T} (all labels = \emptyset)

Bisimulation quotient \mathcal{T}/\sim

[s4]_

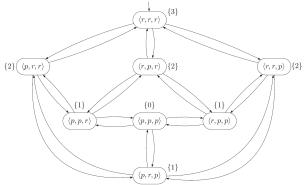
Each color = one \mathcal{R} -equivalence class.

 \implies Blackboard explanation: \mathcal{R} is a bisimulation and quotienting.

Chapter 2: Modeling systems

Quotienting (6/7)

Example: many printers (1/2)



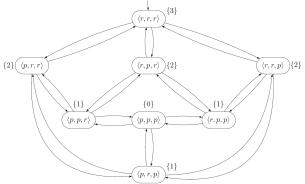
TS T_3 for three printers [BK08].

System composed of *n* printers with two states: *ready* and *print*.

 \hookrightarrow Entire system $\mathcal{T}_n = Printer \parallel \mid \ldots \mid \mid Printer.$

Quotienting (6/7)

Example: many printers (1/2)



TS T_3 for three printers [BK08].

▷
$$AP = \{0, 1, ..., n\}$$
 (number of ready printers).
▷ $|\mathcal{T}_n| = 2^n \implies \text{exponential!} \implies \text{let's quotient it!}$

Chapter 2: Modeling systems

Quotienting (7/7)

Example: many printers (2/2)

Bisimulation quotient T_3/\sim [BK08].

▷ \mathcal{R} -equivalence classes based on number of available printers. ▷ $|\mathcal{T}_n/\sim| = n + 1$. \implies now only linear!

Quotienting can lead to huge gain in the model size while preserving needed properties.

 \implies powerful abstraction mechanism.

It can even help in reducing infinite TSs to finite quotients. See *bakery algorithm* example in the book.

Quotienting algorithm (1/11) Sketch

Goal Given a TS $\mathcal{T} = (S, Act, \rightarrow, I, AP, L)$, compute its bisimulation quotient \mathcal{T}/\sim .

Partition-refinement technique.

- \hookrightarrow Partition state space S in *blocks*: pairwise disjoint sets of states.
 - **1** Start with a straightforward initial partition.
 - 2 Refine iteratively up to the point where *each block only contains bisimilar states.*

Quotienting algorithm (2/11)

Partitions and blocks

Definition: partition

A partition of S is a set $\Pi = \{B_1, \ldots, B_k\}$ such that

•
$$\forall i, B_i \neq \emptyset$$
,

•
$$\forall i, j, i \neq j, B_i \cap B_j = \emptyset$$
,

$$S = \bigcup_{1 \le i \le k} B_i.$$

Definition: block and superblock

 $B_i \in \Pi$ is called a **block**. A **superblock** of Π is a set $C \subseteq S$ such that $C = B_{i_1} \cup \ldots \cup B_{i_l}$ for some $B_{i_1}, \ldots, B_{i_l} \in \Pi$.

A partition Π is finer than Π' if $\forall B \in \Pi$, $\exists B' \in \Pi'$, $B \subseteq B'$.

 \hookrightarrow Each block of Π' (coarser) is the disjoint union of blocks in Π .

 \triangleright *Strictly* finer if $\Pi \neq \Pi'$.

Chapter 2: Modeling systems

Quotienting algorithm (3/11)

Partitions and equivalences

- \mathcal{R} is an equivalence on $S \Longrightarrow S/\mathcal{R}$ is a partition of S.
- $\Pi = \{B_1, \dots, B_k\}$ is a partition of $S \Longrightarrow \mathcal{R}_{\Pi}$ is an equivalence relation

$$\mathcal{R}_{\Pi} = \{(s,s') \mid \exists B_i \in \Pi, s \in B_i \land s' \in B_i\}$$
$$= \{(s,s') \mid [s]_{\Pi} = [s']_{\Pi}\}.$$

• $S/\mathcal{R}_{\Pi} = \Pi.$

Quotienting algorithm (4/11)

Partition-refinement: key steps

- **Goal**: iteratively compute a partition of S.
 - 1 Initial partition: $\Pi_0 = \Pi_{AP} = S / \mathcal{R}_{AP}$ with

$$\mathcal{R}_{AP} = \{(s,s') \in S \times S \mid L(s) = L(s')\}.$$

▷ Group states with identical labels $\implies \mathcal{R}_{AP} \supseteq \sim$.

2 Repeat $\Pi_{i+1} = Refine(\Pi_i)$ until stabilization.

▷ Loop invariant: Π_i is coarser than S/\sim and finer than $\{S\}$.

3 Return Π_i .

 $\triangleright \quad \text{Termination:} \ S \times S \supseteq \mathcal{R}_{\Pi_0} \supsetneq \mathcal{R}_{\Pi_1} \supsetneq \mathcal{R}_{\Pi_2} \supsetneq \ldots \ \supsetneq \mathcal{R}_{\Pi_i} = \sim.$

Quotienting algorithm (5/11)

Coarsest partition

Theorem

 S/\sim is the coarsest partition Π of S such that: (i) Π is finer than $\Pi_0 = \Pi_{AP}$, (ii) $\forall B, B' \in \Pi, B \cap Pre(B') = \emptyset \lor B \subseteq Pre(B')$. Moreover, if Π satisfies (ii), then it is also the case that $B \cap Pre(C) = \emptyset \lor B \subseteq Pre(C)$ for all blocks $B \in \Pi$ and all superblocks C of Π .

Intuitively, (ii) says that if one state in B may lead to B', then all of them must also allow it (otherwise they would not be bisimilar).

 \implies The partition-refinement algorithm will lead to the coarsest partition satisfying (i) and (ii), hence to $S/\!\sim$.

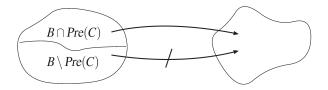
Quotienting algorithm (6/11)

Refinement operator

Definition: refinement operator

 $Refine(\Pi, C) = \bigcup_{B \in \Pi} Refine(B, C)$ for C a superblock of Π .

 $Refine(B, C) = \{B \cap Pre(C), B \setminus Pre(C)\} \setminus \{\emptyset\}.$



block B superblock C Refinement operator [BK08].

Quotienting algorithm (7/11)

Refinement operator: properties

Correctness

For Π finer than Π_{AP} and coarser than S/\sim , we have that:

(a) $Refine(\Pi, C)$ is finer than Π ,

(b) $Refine(\Pi, C)$ is coarser than S/\sim .

Termination criterion

For Π finer than Π_{AP} and coarser than S/\sim , we have that:

```
\Pi \text{ is strictly coarser than } S/\sim \\ \Uparrow \\ \exists \text{ a splitter for } \Pi.
```

 \implies When no more splitters, we are done: $\Pi_i = S/\sim$.

Quotienting algorithm (8/11) Splitters

Definitions: splitter, stability

Let Π be a partition of S and C a superblock of Π .

• C is a *splitter* of Π if $\exists B \in \Pi$ such that

$$B \cap Pre(C) \neq \emptyset \land B \setminus Pre(C) \neq \emptyset.$$

• $B \in \Pi$ is *stable* w.r.t. *C* if

$$B \cap Pre(C) = \emptyset \lor B \setminus Pre(C) = \emptyset.$$

• Π is stable w.r.t. *C* if all $B \in \Pi$ are stable w.r.t. *C*.

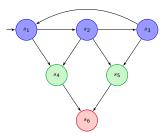
Quotienting algorithm (9/11) Algorithm (sketch)

Input: TS $\mathcal{T} = (S, Act, \longrightarrow, I, AP, L)$ Output: bisimulation quotient state space S/\sim $\Pi := \Pi_{AP}$ while \exists a splitter for Π do choose a splitter C for Π $\Pi := Refine(\Pi, C)$ { $Refine(\Pi, C)$ is strictly finer than Π } return Π

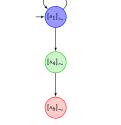
\implies Blackboard illustration on previous example.

Quotienting algorithm (10/11)

Illustration (summary)



TS \mathcal{T} (all labels = \emptyset)



Bisimulation quotient \mathcal{T}/\sim

• $\Pi_0 := \Pi_{AP} = \{S\}$ • $C = S, \Pi := Refine(\Pi, C) = \{\{s_1, s_2, s_3, s_4, s_5\}, \{s_6\}\}$ • $C = \{s_1, s_2, s_3, s_4, s_5\}, \Pi := \{\{s_1, s_2, s_3\}, \{s_4, s_5\}, \{s_6\}\}$ • No more splitters $\Longrightarrow \Pi = S/\sim$

Chapter 2: Modeling systems

Quotienting algorithm (11/11)

How should we choose splitters?

What is a good splitter candidate for Π_{i+1} ?

- **1** Simple strategy: use any block of Π_i as candidate.
 - \hookrightarrow Complexity of whole algorithm: $\mathcal{O}(|S| \cdot (|AP| + M))$, with M the number of edges.
- 2 Advanced strategy: use only "smaller" blocks of Π_i as candidates and apply "simultaneous" refinement.
 - \hookrightarrow Complexity of whole algorithm: $\mathcal{O}(|S| \cdot |AP| + M \cdot \log |S|)$, with *M* the number of edges.

 \implies See book for more on the advanced strategy.

Equivalence checking through quotienting (1/2)

Idea

Let \mathcal{T}_1 and \mathcal{T}_2 be two TSs. The partition-refinement algorithm can be used to check if $\mathcal{T}_1 \sim \mathcal{T}_2$.

Procedure:

- 1 Compute the composite TS $\mathcal{T} = \mathcal{T}_1 \oplus \mathcal{T}_2$ defined as $\mathcal{T} := (S_1 \uplus S_2, Act_1 \cup Act_2, \longrightarrow_1 \cup \longrightarrow_2, I_1 \cup I_2, AP, L)$ with $L(s) = L_i(s)$ if $s \in S_i$.
- **2** Compute S/\sim , the bisimulation quotient space of \mathcal{T} .
- 3 Check if, for all bisimulation equivalence class C of \mathcal{T} ,

$$C \cap I_1 = \emptyset \iff C \cap I_2 = \emptyset.$$

4 The answer is Yes if and only if $\mathcal{T}_1 \sim \mathcal{T}_2$.

Chapter 2: Modeling systems

Equivalence checking through quotienting (2/2)

Total complexity:

 $\mathcal{O}((|S_1| + |S_2|) \cdot |AP| + (M_1 + M_2) \cdot \log(|S_1| + |S_2|))$

where M_i is the number of edges of T_i .

 \implies Polynomial-time whereas trace equivalence is PSPACE-complete.

 \implies Much more efficient!

But recall that:

 \implies Sound but incomplete way to check trace equivalence.

Chapter 2: Modeling systems

1 Transition systems

2 Comparing TSs: why, how, graph isomorphism, trace equivalence

3 Bisimulation

Idea

Bisimulation $s_1 \sim s_2$.

- Equivalence relation.
- Identical stepwise behavior.

Simulation $s_1 \preceq s_2$.

- Preorder (i.e., reflexive, transitive).
- s₂ simulates s₁:
 - \triangleright s_2 can mimic all stepwise behavior of s_1 ,
 - ▷ the reverse $(s_2 \preceq s_1)$ is not guaranteed.
 - \hookrightarrow s_2 may perform transitions that s_1 cannot match.

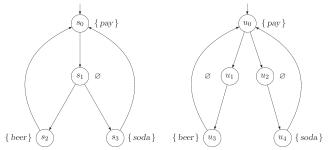
Simulation \implies implementation relation, e.g., $\mathcal{T} \preceq \mathcal{T}_f$, with \mathcal{T}_f an abstraction of \mathcal{T} , i.e., \mathcal{T} correctly implements \mathcal{T}_f .

Definition

Definition: simulation preorder

Let $\mathcal{T}_i = (S_i, Act_i, \longrightarrow_i, I_i, AP, L_i), i = 1, 2$, be TSs over AP. A simulation for $(\mathcal{T}_1, \mathcal{T}_2)$ is a binary relation $\mathcal{R} \subseteq S_1 \times S_2$ s.t. (A) $\forall s_1 \in I_1, \exists s_2 \in I_2, (s_1, s_2) \in \mathcal{R}$ (B) for all $(s_1, s_2) \in \mathcal{R}$ it holds: (1) $L_1(s_1) = L_2(s_2)$ (2) $s'_1 \in Post(s_1) \Longrightarrow (\exists s'_2 \in Post(s_2) \land (s'_1, s'_2) \in \mathcal{R})$ \mathcal{T}_1 is simulated by \mathcal{T}_2 , or equivalently \mathcal{T}_2 simulates \mathcal{T}_1 , denoted $\mathcal{T}_1 \preceq \mathcal{T}_2$, if there exists a simulation \mathcal{R} for $(\mathcal{T}_1, \mathcal{T}_2)$.

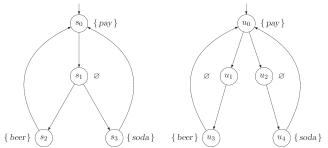
Observe that bisimulations are also simulations but not the opposite.



Beverage vending machines [BK08].

Recall that those machines, here called \mathcal{T} and \mathcal{T}' , were shown to be **non-bisimilar** before for $AP = \{pay, beer, soda\}$.

What about simulation?

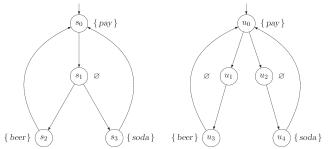


Beverage vending machines [BK08].

The left one simulates the other: $\mathcal{T}' \preceq \mathcal{T}$.

$$\mathcal{R} = \{(u_0, s_0), (u_1, s_1), (u_2, s_1), (u_3, s_2), (u_4, s_3)\}$$

 \implies Blackboard proof.



Beverage vending machines [BK08].

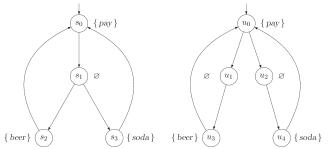
The right one does not simulate the other: $\mathcal{T} \not\preceq \mathcal{T}'$. \hookrightarrow State s_1 cannot be mimicked! Candidates are u_1 and u_2 but they do not satisfy condition (B.2).

$$\triangleright$$
 $u_1 \not\rightarrow soda$ and $u_2 \not\rightarrow beer$.

$$\triangleright \mathcal{T} \not\preceq \mathcal{T}' \text{ for } AP = \{pay, beer, soda\}.$$

Chapter 2: Modeling systems

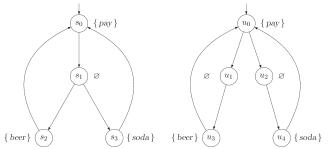
Mickael Randour



Beverage vending machines [BK08].

What if we take a more abstract labeling $AP = \{pay, drink\}$?

▷ $L(s_0) = L(t_0) = \{pay\}, L(s_1) = L(u_1) = L(u_2) = \emptyset$, all others labels = $\{drink\}$.



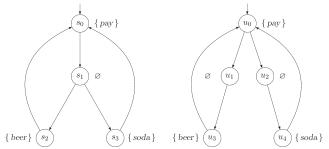
Beverage vending machines [BK08].

Then, $\mathcal{T}' \preceq \mathcal{T}$ and $\mathcal{T} \preceq \mathcal{T}'$ using

$$\mathcal{R} = \{(u_0, s_0), (u_1, s_1), (u_2, s_1), (u_3, s_2), (u_4, s_3)\}$$

and $\mathcal{R}' = \{(s_0, u_0), (s_1, u_1), (s_2, u_3), (s_3, u_3)\}$

 \Rightarrow Blackboard proof.



Beverage vending machines [BK08].

Then, $\mathcal{T}' \preceq \mathcal{T}$ and $\mathcal{T} \preceq \mathcal{T}'$ using

$$\mathcal{R} = \{(u_0, s_0), (u_1, s_1), (u_2, s_1), (u_3, s_2), (u_4, s_3)\}$$

and $\mathcal{R}' = \{(s_0, u_0), (s_1, u_1), (s_2, u_3), (s_3, u_3)\}$

 \triangle Error in book: \mathcal{R}^{-1} does not work for $\mathcal{T} \preceq \mathcal{T}' \Longrightarrow$ exercise.

Properties

Simulation is a preorder

For a fixed set AP of propositions, the simulation relation \preceq is reflexive and transitive.

- Reflexivity: $\mathcal{T} \preceq \mathcal{T}$.
- Transitivity: $\mathcal{T} \preceq \mathcal{T}' \land \mathcal{T}' \preceq \mathcal{T}'' \Longrightarrow \mathcal{T} \preceq \mathcal{T}''.$

\implies Exercise.

Abstraction (1/4)

Concept

Let $\mathcal T$ be a TS.

• If \mathcal{T}' is obtained from \mathcal{T} by removing transitions (e.g., resolving non-determinism), then $\mathcal{T}' \preceq \mathcal{T}$.

 $\hookrightarrow \mathcal{T}'$ is a **refinement** of \mathcal{T} .

• If \mathcal{T}' is obtained from \mathcal{T} by abstraction, then $\mathcal{T} \preceq \mathcal{T}'$.

Abstraction: idea

Represent a set of concrete states (with identical labels) using a unique abstract state, through an abstraction function $f: S \to \widehat{S}$.

Abstraction function

$$f: S \to \widehat{S}$$
 is an abstraction function if
 $f(s) = f(s') \Longrightarrow L(s) = L(s)$

Chapter 2: Modeling systems

Mickael Randour

Abstraction (2/4)

Usefulness

- From concrete states S to abstract states \widehat{S} s.t. $|\widehat{S}| \ll |S|$.
 - $\,\hookrightarrow\,$ Goal: more efficient model checking.
- Useful for data abstraction, predicate abstraction, localization reduction.

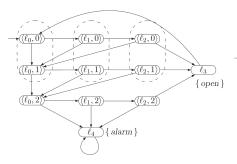
 \Longrightarrow See book for formal discussion.

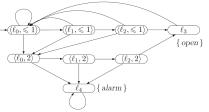
Here, example of an automatic door opener.

▷ Three-digit code, two errors allowed before alarm.

Abstraction (3/4)

Example: automatic door opener (1/2)





Abstract TS [BK08].

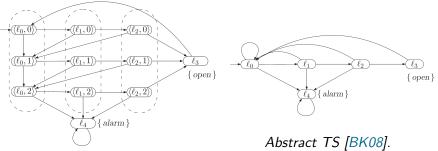
Automatic door opener [BK08].

First abstraction: group by number of errors $\{\leq 1, 2\}$.

By construction, $\mathcal{T} \preceq \mathcal{T}_f$.

Abstraction (4/4)

Example: automatic door opener (2/2)



Automatic door opener [BK08].

Second abstraction: complete abstraction of the number of errors.

 \hookrightarrow Coarser abstraction \Longrightarrow smaller TS.

By construction, $\mathcal{T} \preceq \mathcal{T}_f$.

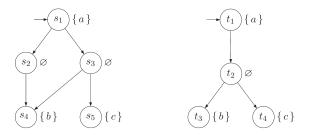
Simulation equivalence

Definition: simulation equivalence

TSs \mathcal{T}_1 and \mathcal{T}_2 are simulation-equivalent, or *similar*, denoted $\mathcal{T}_1 \simeq \mathcal{T}_2$, if $\mathcal{T}_1 \preceq \mathcal{T}_2$ and $\mathcal{T}_2 \preceq \mathcal{T}_1$.

Simulation is **coarser** than bisimulation:

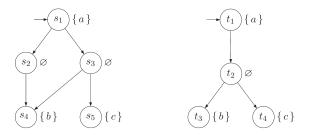
 $\begin{aligned} \mathcal{T}_1 \simeq \mathcal{T}_2 \\ & \not \downarrow \uparrow \\ \mathcal{T}_1 \sim \mathcal{T}_2 \end{aligned}$



Similar but not bisimilar TSs [BK08].

$$\begin{split} \mathcal{T}_1 &\simeq \mathcal{T}_2 \\ &\triangleright \ \mathcal{T}_1 \preceq \mathcal{T}_2: \ \mathcal{R}_1 = \{(s_1, t_1), (s_2, t_2), (s_3, t_2), (s_4, t_3), (s_5, t_4)\}. \\ &\triangleright \ \mathcal{T}_2 \preceq \mathcal{T}_1: \ \mathcal{R}_2 = \{(t_1, s_1), (t_2, s_3), (t_3, s_4), (t_4, s_5)\}. \end{split}$$

\Rightarrow Blackboard proof.

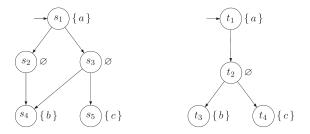


Similar but not bisimilar TSs [BK08].

$\mathcal{T}_1 \simeq \mathcal{T}_2$ but $\mathcal{T}_1 \not\sim \mathcal{T}_2$

▷ Only candidate to mimic s_2 is t_2 but $t_2 \rightarrow t_4$ cannot be mimicked by s_2 .

 \implies Blackboard proof.



Similar but not bisimilar TSs [BK08].

 $\mathcal{T}_1 \simeq \mathcal{T}_2$ but $\mathcal{T}_1 \not\sim \mathcal{T}_2$. The difference is that:

 \triangleright For \simeq , we can use two \neq relations \mathcal{R}_1 and \mathcal{R}_2 .

 \triangleright For \sim , we need to use **the same relation** in both directions!

Quotienting (1/3)

Idea

ldea
1 As for bisimulation, see simulation as a relation between
states of a <i>single</i> TS.
Quotient the TS by this relation.
▷ Obtain a smaller TS that preserves properties.
3 Model check the smaller TS.
\triangleright More efficient! (quotienting is "cheap" in comparison to model
checking)

Since simulation is coarser than bisimulation, the simulation quotient will be a better abstraction, i.e., $|S/\simeq| \leq |S/\sim|$.

Still, simulation only preserves a smaller fragment of CTL, while bisimulation preserves the whole logic.

 \implies If sufficient, use the simulation quotient.

Quotienting
$$(2/3)$$

Simulation on states

Definition: simulation preorder as a relation on states

Let $\mathcal{T} = (S, Act, \longrightarrow, I, AP, L)$ be a TS. A simulation for \mathcal{T} is a binary relation \mathcal{R} on $S \times S$ s.t. for all $(s_1, s_2) \in \mathcal{R}$:

(1)
$$L(s_1) = L(s_2)$$

(2) $s'_1 \in Post(s_1) \Longrightarrow (\exists s'_2 \in Post(s_2) \land (s'_1, s'_2) \in \mathcal{R})$

States s_1 is simulated by s_2 , or s_2 simulates s_1 , denoted $s_1 \leq_{\mathcal{T}} s_2$, if there exists a simulation \mathcal{R} for \mathcal{T} with $(s_1, s_2) \in \mathcal{R}$. States s_1 and s_2 are similar, denoted $s_1 \simeq_{\mathcal{T}} s_2$ if $s_1 \leq_{\mathcal{T}} s_2$ and $s_2 \leq_{\mathcal{T}} s_1$.

Remark: $\leq_{\mathcal{T}}$ is the *coarsest simulation* for \mathcal{T} .

For simplicity, we write \preceq and \simeq for $\preceq_{\mathcal{T}}$ and $\simeq_{\mathcal{T}}$ in the following.

Simulation quotient

Quotient

Let $\mathcal{T} = (S, Act, \longrightarrow, I, AP, L)$ be a TS. The simulation quotient of \mathcal{T} is defined by

$$\mathcal{T}/\simeq = (S/\simeq, \{\tau\}, \longrightarrow', I', AP, L')$$

where:

$$I' = \{[s]_{\simeq} \mid s \in I\},\$$

$$s \xrightarrow{\alpha} s' \implies [s]_{\simeq} \xrightarrow{\tau} [s']_{\simeq},\$$

$$L'([s]_{\simeq}) = L(s).$$

It is easily shown that $\mathcal{T}\simeq \mathcal{T}/\!\simeq\!.$

Algorithm for simulation preorder (1/4) $_{Goal}$

Goal

Given a TS $\mathcal{T} = (S, Act, \rightarrow, I, AP, L)$, compute the simulation preorder $\preceq_{\mathcal{T}}$ (the coarsest simulation).

- ▷ Can be used to compute T/\simeq (by looking at states s_1, s_2 such that $s_1 \preceq s_2$ and $s_2 \preceq s_1$).
- \triangleright Can be used to check whether $\mathcal{T}_1 \simeq \mathcal{T}_2$ by computing $\mathcal{T}_1 \oplus \mathcal{T}_2 / \simeq$ as for bisimulation.

Algorithm for simulation preorder (2/4)Basic idea

Input: TS
$$\mathcal{T} = (S, Act, \rightarrow, I, AP, L)$$

Output: simulation preorder $\preceq_{\mathcal{T}}$
 $\mathcal{R} := \{(s_1, s_2) \mid L(s_1) = L(s_2)\}$
while \mathcal{R} is not a simulation do
let $(s_1, s_2) \in \mathcal{R}$ s.t. $s_1 \rightarrow s'_1 \land \nexists s'_2$ s.t. $(s_2 \rightarrow s'_2 \land (s'_1, s'_2) \in \mathcal{R})$
 $\mathcal{R} := \mathcal{R} \setminus \{(s_1, s_2)\}$
return \mathcal{R}

Intuitively, we start with the largest possible approximation (i.e., identical labels) and iteratively remove pairs of states that do not satisfy $s_1 \leq s_2$ up to obtaining a proper simulation relation.

iterations bounded by $|S|^2$:

$$S \times S \supseteq \mathcal{R}_0 \subsetneq \mathcal{R}_1 \supsetneq \ldots \supsetneq \mathcal{R}_n = \preceq_{\mathcal{T}}$$

Chapter 2: Modeling systems

Mickael Randour

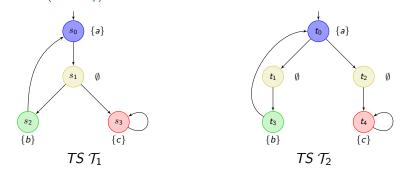
Algorithm for simulation preorder (3/4)Complexity

While straightforward implementation leads to $\mathcal{O}(M \cdot |S|^3)$, clever refinements reduce the complexity of the algorithm to $\mathcal{O}(M \cdot |S|)$.

 \implies See the book for more details.

 \implies Blackboard illustration for two TSs.

Algorithm for simulation preorder (4/4) Illustration (summary)



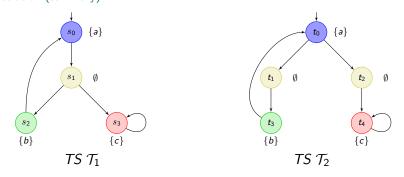
$\mathcal{T}_1 \preceq \mathcal{T}_2$?

$$\begin{array}{l} \triangleright \ \ \mathcal{R}_0 = \{(s_0, t_0), (s_1, t_1), (s_1, t_2), (s_2, t_3), (s_3, t_4)\} \\ \triangleright \ \ \mathcal{R}_1 = \{(s_0, t_0), (s_1, t_2), (s_2, t_3), (s_3, t_4)\} \\ \triangleright \ \ \mathcal{R}_2 = \{(s_0, t_0), (s_2, t_3), (s_3, t_4)\}, \ \mathcal{R}_3 = \{(s_2, t_3), (s_3, t_4)\} \end{array}$$

Chapter 2: Modeling systems

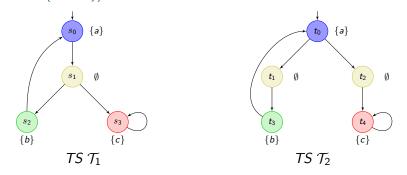
Mickael Randour

Algorithm for simulation preorder (4/4) Illustration (summary)

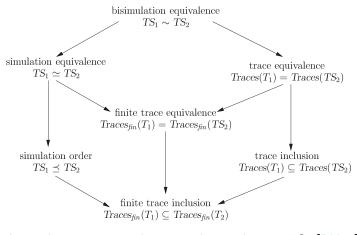


$\mathcal{T}_1 \preceq \mathcal{T}_2?$ $\triangleright \ \mathcal{R}_4 = \{(s_3, t_4)\} = \preceq$ $(s_0, t_0) \notin \prec \Longrightarrow \ \mathcal{T}_1 \not\prec \mathcal{T}_2$

Algorithm for simulation preorder (4/4) Illustration (summary)



$\begin{aligned} \mathcal{T}_2 \leq \mathcal{T}_1? \\ \triangleright \ \mathcal{R}_0 &= \{(t_0, s_0), (t_1, s_1), (t_2, s_1), (t_3, s_2), (t_4, s_3)\} = \leq \\ & (t_0, s_0) \in \preceq \implies \mathcal{T}_2 \leq \mathcal{T}_1 \end{aligned}$



Relation between equivalences and preorders on TSs [BK08]: $\mathcal{R} \to \mathcal{R}'$ means that \mathcal{R} is strictly finer than \mathcal{R}' (i.e., it is more distinctive).

Chapter 2: Modeling systems

Mickael Randour

Other properties of simulation

If \mathcal{T}_1 and \mathcal{T}_2 do not have terminal states:

- $\triangleright \ \mathcal{T}_1 \preceq \mathcal{T}_2 \implies \mathit{Traces}(\mathcal{T}_1) \subseteq \mathit{Traces}(\mathcal{T}_2);$
- \triangleright if \mathcal{T}_2 satisfies a linear-time property (LTL), then \mathcal{T}_1 also;
- ▷ if \mathcal{T}_2 satisfies a branching-time property expressible in \forall CTL or \exists CTL (i.e., strict fragments of CTL), then \mathcal{T}_1 also.

 \implies See book for more.

References I

C. Baier and J.-P. Katoen. Principles of model checking. MIT Press, 2008.