Formal Methods for System Design

Chapter 3: Linear temporal logic

Mickael Randour

Mathematics Department, UMONS

October 2021

1 LTL: a specification language for LT properties

2 Büchi automata: automata on infinite words

3 LTL model checking

1 LTL: a specification language for LT properties

2 Büchi automata: automata on infinite words

3 LTL model checking

Linear time semantics: a reminder

TS T with state labels $AP = \{a, b\}$ (state and action names are omitted). From now on, we assume **no terminal state**.

• Linear time semantics deals with *traces* of executions.

 \triangleright The language of infinite words described by \mathcal{T} .

 \triangleright E.g., do all executions eventually reach (1)? No.

Chapter 3: Linear temporal logic

Safety

TS for semaphore-based mutex [BK08] (Ch. 2).

Ensure that $\langle c_1, c_2, y = \dots \rangle \notin Reach(\mathcal{T}(PG_1 \parallel PG_2))$ or equivalently that $\nexists \pi \in Paths(\mathcal{T}), \langle c_1, c_2, y = \dots \rangle \in \pi$.

 $\hookrightarrow \text{ Satisfied.}$

Chapter 3: Linear temporal logic

Safety

TS for semaphore-based mutex [BK08] (Ch. 2).

For model checking, we like to use *labels* and *traces*.

- \triangleright $AP = \{crit_1, crit_2\}$, natural labeling.
- ▷ Ensure that $\nexists \sigma \in Traces(\mathcal{T}), \{crit_1, crit_2\} \in \sigma.$

Liveness

Beverage vending machine [BK08] (Ch. 2).

Ensure that the machine delivers a *drink* infinitely often.

- \triangleright AP = {paid, drink}, natural labeling.
- $\triangleright \forall \sigma \in Traces(\mathcal{T})$, for all position *i* along σ , label *drink* must appear in the future.

 \implies Will be formalized thanks to LTL.

 \hookrightarrow Satisfied. Recall we consider *infinite* executions.

Chapter 3: Linear temporal logic

Liveness

Beverage vending machine [BK08] (Ch. 2).

What if we ask that the machine delivers a *beer* infinitely often.

 \triangleright $AP = \{paid, soda, beer\}$, natural labeling.

- $\triangleright \forall \sigma \in Traces(\mathcal{T})$, for all position *i* along σ , label *beer* must appear in the future.
- \hookrightarrow Not satisfied. E.g., $\sigma = (\emptyset \{ paid \} \{ paid, soda \})^{\omega}$.

Safety vs. liveness

Informally, safety means "something bad never happens."

- \implies Can easily be satisfied by doing nothing!
- ⇒ Needs to be complemented with liveness, i.e., "something good will happen."

Finite vs. infinite time

Safety is violated by *finite* executions (i.e., the prefix up to seeing a bad state) whereas liveness is violated by *infinite* ones (witnessing that the good behavior never occurs).

\Longrightarrow For more about the safety/liveness taxonomy, see the book.

Persistence

Ensure that a property eventually holds forever.

- \triangleright E.g., from some point on, *a* holds but *b* does not.
- \hookrightarrow Satisfied. Indeed,

 $Traces(\mathcal{T}) = \{a\} \ \left[\{a\}^{\omega} \mid (\{a\} \{a, c\})^{\omega} \mid \{a\}^{+} \{b\} (\{a, c\} \{a\})^{\omega}\right].$

 \implies Ultimately periodic traces where *b* is false and *a* is true, at all steps after some point.

Chapter 3: Linear temporal logic

Fairness (1/4)

TS for semaphore-based mutex [BK08] (Ch. 2).

Ensure that both processes get *fair access* to the critical section.

What is fairness?

Chapter 3: Linear temporal logic

Different kinds of LT properties Fairness (2/4)

Different types of fairness constraints.

- Unconditional fairness. E.g., "every process gets access infinitely often."
- Strong fairness. E.g., "every process that requests access infinitely often gets access infinitely often."
- Weak fairness. E.g., "every process that continuously requests access from some point on gets access infinitely often."

 $\begin{array}{l} \text{Unconditional} \Longrightarrow \text{strong} \Longrightarrow \text{weak.} \\ \text{Converse not true in general.} \end{array}$

 \implies All forms can be formalized in LTL.

TS for semaphore-based mutex [BK08] (Ch. 2).

The semaphore-based mutex is **not fair** in any sense. We have seen that *starvation* is possible. E.g., execution

$$\langle n_1, n_2, y = 1 \rangle \longrightarrow (\langle w_1, n_2, y = 1 \rangle \longrightarrow \langle w_1, w_2, y = 1 \rangle \longrightarrow \langle w_1, c_2, y = 0 \rangle)^{\omega}$$

sees process 1 asking continuously but never getting access (hence not even weakly fair).

Chapter 3: Linear temporal logic

Fairness (4/4)

TS for Peterson's mutex [BK08] (Ch. 2).

Peterson's mutex is **strongly fair**. We saw that it has *bounded waiting*.

▷ A process requesting access waits at most one turn.

 $\label{eq:star} \hookrightarrow \text{ Infinitely frequent requests} \Longrightarrow \text{ infinitely frequent access.} \\ \Longrightarrow \text{ Strong fairness.}$

Chapter 3: Linear temporal logic

Linear Temporal Logic

LT property

Essentially, a set of acceptable traces over AP.

- ▷ Often difficult to describe explicitly.
- > Adequate formalism needed for model checking.

 \implies Linear Temporal Logic (LTL): propositional logic + temporal operators.

Chapter 3: Linear temporal logic

LTL syntax

Core syntax

LTL syntax

Given the set of atomic propositions AP, LTL formulae are formed according to the following grammar:

$$\phi ::= \mathsf{true} \mid a \mid \phi \land \psi \mid \neg \phi \mid \bigcirc \phi \mid \phi \, \mathsf{U} \, \psi$$

where $a \in AP$.

LTL syntax

Derived operators

$$\phi \lor \psi \equiv \neg (\neg \phi \land \neg \psi)$$

$$\phi \rightarrow \psi \equiv \neg \phi \lor \psi \quad \text{*implication*}$$

$$\phi \leftrightarrow \psi \equiv (\phi \rightarrow \psi) \land (\psi \rightarrow \phi) \quad \text{*equivalence*}$$

$$\phi \oplus \psi \equiv (\phi \land \neg \psi) \lor (\neg \phi \land \psi) \quad \text{*exclusive or*}$$

$$false \equiv \neg true$$

$$\Diamond \phi \equiv true \cup \phi \quad \text{*eventually (or finally)*}$$

$$\Box \phi \equiv \neg \Diamond \neg \phi \quad \text{*always (or globally)*}$$

$$\phi W \psi \equiv (\phi \cup \psi) \lor \Box \phi \quad \text{*weak until*}$$

$$\phi R \psi \equiv \neg (\neg \phi \cup \neg \psi) \quad \text{*release*}$$

- $\,\vartriangleright\,$ Weak until \leadsto until that does not require ψ to be reached.
- $\vartriangleright \ \ \, {\rm Release} \rightsquigarrow \psi \ {\rm must \ hold \ up \ to \ the \ point \ where \ } \phi \ {\rm releases \ it, \ or} \ forever \ {\rm if \ } \phi \ {\rm never \ holds.}$

Chapter 3: Linear temporal logic

LTL syntax

Precedence order

Precedence order:

- ▷ unary operators before binary ones,
- $\triangleright \neg$ and \bigcirc equally strong,
- \triangleright U before \land , \lor and \rightarrow .

Formalizing LT properties in LTL

TS for semaphore-based mutex [BK08] (Ch. 2).

 \triangleright $AP = \{crit_1, crit_2\}$, natural labeling.

▷ Ensure that $\nexists \sigma \in Traces(\mathcal{T}), \{crit_1, crit_2\} \in \sigma.$

 $\hookrightarrow \neg \diamondsuit (crit_1 \land crit_2)$ or equivalently $\Box (\neg crit_1 \lor \neg crit_2)$.

Formalizing LT properties in LTL

Liveness

Beverage vending machine [BK08] (Ch. 2).

- \triangleright AP = {paid, drink}, natural labeling.
- $\triangleright \forall \sigma \in Traces(\mathcal{T})$, for all position *i* along σ , label *drink* must appear in the future.
- $\hookrightarrow \Box \diamondsuit drink.$

$$\implies$$
 "infinitely often"

Formalizing LT properties in LTL

Persistence

Ensure that a property eventually holds forever.

 \triangleright E.g., from some point on, *a* holds but *b* does not.

 $\hookrightarrow \Diamond \Box (a \land \neg b).$

Formalizing LT properties in LTL Fairness

Assume k processes and $AP = \{wait_1, \dots, wait_k, crit_1, \dots, crit_k\}$.

Unconditional fairness. E.g., "every process gets access infinitely often."

 $\hookrightarrow \bigwedge_{1 \leq i \leq k} \Box \diamondsuit \operatorname{crit}_i.$

• Strong fairness. E.g., "every process that requests access infinitely often gets access infinitely often."

 $\hookrightarrow \bigwedge_{1 \leq i \leq k} (\Box \diamondsuit wait_i \to \Box \diamondsuit crit_i).$

Weak fairness. E.g., "every process that continuously requests access from some point on gets access infinitely often."

 $\hookrightarrow \bigwedge_{1 \leq i \leq k} (\Diamond \Box wait_i \to \Box \Diamond crit_i).$

LTL semantics

Over words (1/2)

Given propositions AP and LTL formula ϕ , the associated LT property is the language of words:

$$\mathit{Words}(\phi) = \left\{\sigma = \mathsf{A}_0\mathsf{A}_1\mathsf{A}_2\ldots \in (2^{AP})^\omega \mid \sigma \models \phi\right\}$$

where \models is the smallest relation satisfying:

$$\begin{split} \sigma &\models \text{true} & \textit{Recall letters are subsets of } AP \\ \sigma &\models a & \text{iff} \quad a \in A_0 \\ \sigma &\models \phi \land \psi & \text{iff} \quad \sigma \models \phi \text{ and } \sigma \models \psi \\ \sigma &\models \neg \phi & \text{iff} \quad \sigma \not\models \phi \\ \sigma &\models \bigcirc \phi & \text{iff} \quad \sigma [1..] = A_1 A_2 \dots \models \phi \\ \sigma &\models \phi \cup \psi & \text{iff} \quad \exists j \ge 0, \ \sigma[j..] \models \psi \text{ and } \forall 0 \le i < j, \ \sigma[i..] \models \phi \end{split}$$

LTL semantics

Over words (2/2)

Other common operators:

$\sigma \models \diamondsuit \phi$	iff	$\exists j \ge 0, \ \sigma[j] \models \phi$
$\sigma \models \Box \phi$	iff	$\forall j \ge 0, \ \sigma[j] \models \phi$
$\sigma \models \Box \diamondsuit \phi$	iff	$\forall j \ge 0, \ \exists i \ge j, \ \sigma[i] \models \phi$
$\sigma \models \Diamond \Box \phi$	iff	$\exists j \ge 0, \forall i \ge j, \sigma[i] \models \phi$

LTL semantics

Over transition systems

Let $\mathcal{T} = (S, Act, \longrightarrow, I, AP, L)$ be a TS and ϕ an LTL formula over AP.

• For
$$\pi \in Paths(\mathcal{T})$$
, $\pi \models \phi$ iff $trace(\pi) \models \phi$.

• For $s \in S$, $s \models \phi$ iff $\forall \pi \in Paths(s)$, $\pi \models \phi$.

TS \mathcal{T} satisfies ϕ , denoted $\mathcal{T} \models \phi$ iff $Traces(\mathcal{T}) \subseteq Words(\phi)$.

It follows that $\mathcal{T} \models \phi$ iff $\forall s_0 \in I$, $s_0 \models \phi$.

Example

Notice the added initial state.

Semantics of negation Paths

Negation for paths

For $\pi \in Paths(\mathcal{T})$ and an LTL formula ϕ over AP,

$$\pi \not\models \phi \Longleftrightarrow \pi \models \neg \phi$$

because $Words(\neg \phi) = (2^{AP})^{\omega} \setminus Words(\phi)$.

Semantics of negation

Transition systems

Negation for TSs

For TS $\mathcal{T} = (S, Act, \longrightarrow, I, AP, L)$ and an LTL formula ϕ over AP:

$$\begin{array}{c} \mathcal{T} \not\models \phi \\ & \not \downarrow \uparrow \\ \mathcal{T} \models \neg \phi \end{array}$$

We have that $\mathcal{T} \not\models \phi$ iff $Traces(\mathcal{T}) \not\subseteq Words(\phi)$ iff $Traces(\mathcal{T}) \setminus Words(\phi) \neq \emptyset$ iff $Traces(\mathcal{T}) \cap Words(\neg \phi) \neq \emptyset$

But it may be the case that $\mathcal{T} \not\models \phi$ and $\mathcal{T} \not\models \neg \phi$ if

 $Traces(\mathcal{T}) \cap Words(\neg \phi) \neq \emptyset \text{ and } Traces(\mathcal{T}) \cap Words(\phi) \neq \emptyset.$

Semantics of negation Example

We saw that $\mathcal{T} \not\models \Diamond b$. Do we have $\mathcal{T} \models \neg \Diamond b \equiv \Box \neg b$?

 \implies No. Because trace $\sigma = \{a\}^2 \{b\} (\{a, c\} \{a\})^{\omega}$ satisfies $\Diamond b$.

Equivalence of LTL formulae

LTL formulae ϕ and ψ are *equivalent*, denoted $\phi \equiv \psi$, if

 $Words(\phi) = Words(\psi).$

\implies Let us review some computational rules.

Duality, idempotence, absorption

Duality.

$\neg \Box \phi$	≡	$\Diamond \neg \phi$
$\neg \diamondsuit \phi$	\equiv	$\Box \neg \phi$
$\neg \bigcirc \phi$	\equiv	$\bigcirc \neg \phi$

Idempotence.

$$\Box\Box\phi \equiv \Box\phi$$
$$\Diamond\Diamond\phi \equiv \Diamond\phi$$
$$\phi \cup (\phi \cup \psi) \equiv \phi \cup \psi$$
$$(\phi \cup \psi) \cup \psi \equiv \phi \cup \psi$$

Absorption.

Г

Chapter 3: Linear temporal logic

Distribution

Distribution.

$$\begin{array}{l} \bigcirc (\phi \cup \psi) & \equiv & (\bigcirc \phi) \cup (\bigcirc \psi) \\ \diamondsuit (\phi \lor \psi) & \equiv & \diamondsuit \phi \lor \diamondsuit \psi \\ \Box (\phi \land \psi) & \equiv & \Box \phi \land \Box \psi \end{array}$$

$$\begin{array}{ll} \diamondsuit(\phi \land \psi) & \not\equiv & \diamondsuit\phi \land \diamondsuit\psi \\ \Box(\phi \lor \psi) & \not\equiv & \Box\phi \lor \Box\psi \end{array}$$

$$\mathcal{T} \models \Diamond a \land \Diamond b \qquad \text{but} \quad \mathcal{T} \not\models \Diamond (a \land b) \\ \mathcal{T} \models \Box (a \lor b) \qquad \text{but} \quad \mathcal{T} \not\models \Box a \lor \Box b$$

Expansion laws

• Expansion laws (recursive equivalence).

$$\begin{array}{rcl} \phi \: \mathsf{U} \: \psi & \equiv & \psi \lor (\phi \land \bigcirc (\phi \: \mathsf{U} \: \psi)) \\ \diamondsuit \phi & \equiv & \phi \lor \bigcirc \diamondsuit \phi \\ \Box \phi & \equiv & \phi \land \bigcirc \Box \phi \end{array}$$

 \implies Blackboard proof for until.

Positive normal form (PNF)

Weak-until PNF

Goal

Retain the full expressiveness of LTL but permit only negations of atomic propositions.

Weak-until PNF for LTL

Given atomic propositions *AP*, LTL formulae in *weak-until positive normal form* are given by:

$$\phi ::= \mathsf{true} \mid \mathsf{false} \mid \textit{a} \mid \neg\textit{a} \mid \phi \land \psi \mid \phi \lor \psi \mid \bigcirc \phi \mid \phi \, \mathsf{U} \, \psi \mid \phi \, \mathsf{W} \, \psi$$

where $a \in AP$.

\implies Gives a normal form for formulae.

Chapter 3: Linear temporal logic

Positive normal form (PNF)

Rewriting to weak-until PNF

To rewrite any LTL formula into weak-until PNF, we push negations inside:

 $\implies \text{Blackboard example: } \neg \Box((a \cup b) \lor \bigcirc c).$ $\implies \text{Solution: } \diamondsuit((a \land \neg b) \lor (\neg a \land \neg b) \land \bigcirc \neg c).$
Positive normal form (PNF)

Release PNF

Problem

Rewriting to weak-until PNF may induce an exponential blowup in the size of the formula (number of operators) because of the rewrite rule for until.

Solution: release PNF for LTL

Given atomic propositions AP, LTL formulae in *release positive* normal form are given by:

$$\phi ::= \mathsf{true} \mid \mathsf{false} \mid a \mid \neg a \mid \phi \land \psi \mid \phi \lor \psi \mid \bigcirc \phi \mid \phi \, \mathsf{U} \, \psi \mid \phi \, \mathsf{R} \, \psi$$

where $a \in AP$.

We use the rule: $\neg(\phi \cup \psi) \quad \rightsquigarrow \quad \neg\phi \mathsf{R} \neg \psi$.

 \implies linear increase in the size of the formula.

Chapter 3: Linear temporal logic

Back to fairness constraints

Reminder

Let ϕ, ψ be LTL formulae representing that "something is enabled" (ϕ) and that "something is granted" (ψ). Recall the three types of fairness.

Unconditional fairness constraint

ufair
$$= \Box \diamondsuit \psi$$
.

Strong fairness constraint

sfair
$$= \Box \diamondsuit \phi \to \Box \diamondsuit \psi$$
.

Weak fairness constraint

wfair =
$$\Diamond \Box \phi \to \Box \Diamond \psi$$
.

Chapter 3: Linear temporal logic

Fairness assumptions

Let *fair* denote a conjunction of such assumptions. It is sometimes useful to check that all **fair executions** of a TS satisfy a formula (in contrast to all of them).

Fair satisfaction

Let ϕ be an LTL formula and fair an LTL fairness assumption. We have that $\mathcal{T}\models_\mathit{fair}\phi$ iff

 $\forall \sigma \in \mathit{Traces}(\mathcal{T}) \text{ such that } \sigma \models \mathit{fair}, \ \sigma \models \phi.$

Example: randomized arbiter for mutex

Mutual exclusion with a randomized arbiter [BK08].

The arbiter chooses who gets access by tossing a coin: probabilities are abstracted by non-determinism.

Can process 1 access the section infinitely often?

 \hookrightarrow No, $\mathcal{T}_1 \parallel Arbiter \parallel \mathcal{T}_2 \not\models \Box \diamondsuit req_1 \rightarrow \Box \diamondsuit crit_1$ because the arbiter can always choose *tails*.

Chapter 3: Linear temporal logic

Example: randomized arbiter for mutex

Mutual exclusion with a randomized arbiter [BK08].

Intuitively, this is *unfair*: a real coin would lead to this with probability zero.

- \implies LTL fairness assumption: $\Box \diamondsuit heads \land \Box \diamondsuit tails$.
 - $\hookrightarrow \text{ The property is verified on fair executions, i.e.,} \\ \mathcal{T}_1 \parallel || Arbiter \parallel || \mathcal{T}_2 \models_{fair} \bigwedge_{i \in \{1,2\}} (\Box \Diamond req_i \rightarrow \Box \Diamond crit_i).$

Chapter 3: Linear temporal logic

Handling fairness assumptions

Given a formula ϕ and a fairness assumption *fair*, we can reduce \models_{fair} to the classical satisfaction \models .

 \Longrightarrow The classical model checking algorithm will suffice.

1 LTL: a specification language for LT properties

2 Büchi automata: automata on infinite words

3 LTL model checking

Why?

Goal

Express languages of *infinite* words (e.g., $Words(\phi)$) using a *finite* automaton.

\Longrightarrow Will be essential to the model checking algorithm for LTL.

Automata describing languages of *finite* words.

Definition: non-deterministic finite-state automaton (NFA)

Tuple $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ with

- Q a finite set of states,
- Σ a finite alphabet,
- $\delta \colon Q \times \Sigma \to 2^Q$ a transition function,
- $Q_0 \subseteq Q$ a set of initial states,
- $F \subseteq Q$ a set of accept (or final) states.

Example

- $Q = \{q_1, q_2, q_3\}, \Sigma = \{A, B\}, Q_0 = \{q_1\}, F = \{q_3\}.$
- This automaton is non-deterministic: see letter A on state q₁.
- Language?
 - ▷ Finite word $\sigma = A_0A_1...A_n \in \Sigma^*$. A run for σ is a sequence $q_0q_1...q_{n+1}$ such that $q_0 \in Q_0$ and for all $0 \le i \le n$, $q_{i+1} \in \delta(q_i, A_i)$.
 - $\triangleright \sigma \in \mathcal{L}(\mathcal{A})$ if there exists a run $q_0q_1 \dots q_{n+1}$ for σ such that $q_{n+1} \in F$.

 \hookrightarrow Here, $\mathcal{L}(\mathcal{A}) = (\mathcal{A} \mid \mathcal{B})^* \mathcal{A} \mathcal{B}$, i.e., all words ending by "AB."

Regular expressions

Recall that NFAs correspond to **regular languages**, which can be described by *regular expressions*.

Syntax

Regular expressions over letters $A \in \Sigma$ are formed by

$$E ::= \emptyset \mid \varepsilon \mid A \mid E + E' \mid E \cdot E' \mid E^*.$$

Semantics

For regular expression *E*, language $\mathcal{L}(E) \subseteq \Sigma^*$ obtained by $\mathcal{L}(\emptyset) = \emptyset$, $\mathcal{L}(\varepsilon) = \{\varepsilon\}$, $\mathcal{L}(A) = \{A\}$, $\mathcal{L}(E^*) = \mathcal{L}(E)^*$, $\mathcal{L}(E + E') = \mathcal{L}(E) \cup \mathcal{L}(E')$, $\mathcal{L}(E.E') = \mathcal{L}(E).\mathcal{L}(E')$, $\mathcal{L}(E.\emptyset) = \emptyset$.

Syntactic sugar: we often write $E \mid E'$ for E + E', E^+ for $E.E^*$ and we drop the concatenation operator, i.e., EE' instead of E.E'.

Chapter 3: Linear temporal logic

DFAs vs. NFAs

Expressiveness

Deterministic FAs (DFAs) are *expressively equivalent* to NFAs, i.e., for any NFA, there exists a DFA recognizing the same language.

\Longrightarrow One can determinize any NFA through subset construction.

 \implies With a potentially exponential blowup!

\Rightarrow Blackboard illustration.

$\omega\text{-regular}$ languages

Definition

Intuitively, extension of regular languages to *infinite* words.

Syntax

An ω -regular expression G over Σ has the form

$$G = E_1 \cdot F_1^{\omega} + \ldots + E_n \cdot F_n^{\omega}$$
 for $n > 0$

where E_i , F_i are regular expressions over Σ with $\varepsilon \notin \mathcal{L}(F_i)$.

Semantics

For
$$\mathcal{L} \subseteq \Sigma^*$$
, let $\mathcal{L}^{\omega} = \{w_1 w_2 w_3 \dots \mid \forall i \ge 1, w_i \in \mathcal{L}\}.$
For $G = E_1.F_1^{\omega} + \dots + E_n.F_n^{\omega}, \mathcal{L}_{\omega}(G) \subseteq \Sigma^{\omega}$ is given by
 $\mathcal{L}_{\omega}(G) = \mathcal{L}(E_1).\mathcal{L}(F_1)^{\omega} \cup \dots \cup \mathcal{L}(E_n).\mathcal{L}(F_n)^{\omega}.$

Chapter 3: Linear temporal logic

ω -regular languages Examples

- A language \mathcal{L} is ω -regular if $\mathcal{L} = \mathcal{L}_{\omega}(G)$ for some ω -regular expression G.
- Examples for $\Sigma = \{A, B\}$.
 - ▷ Words with infinitely many A's: $(B^*A)^{\omega}$.
 - \triangleright Words with finitely many A's: $(A \mid B)^* B^{\omega}$.
 - ▷ Empty language: \emptyset^{ω} (OK because \emptyset is a valid regular expression).

Properties of ω -regular languages

They are *closed* under union, intersection and complementation.

ω -regular languages Counter-example

Not all languages on infinite words are ω -regular.

E.g., $\mathcal{L} = \{$ words on $\Sigma = \{A, B\}$ such that A appears infinitely often with increasingly many B's between occurrences of $A\}$ is not.

Link with LTL?

We know that every LTL formula ϕ describes a language of infinite words $Words(\phi) \subseteq (2^{AP})^{\omega}$. \implies We will see that for every LTL formula ϕ , $Words(\phi)$ is

an ω -regular language.

The converse is false!

There exist ω -regular languages that cannot be expressed in LTL. E.g.,

$$\mathcal{L} = \Big\{ A_0 A_1 A_2 \ldots \in (2^{\{a\}})^{\omega} \mid \forall i \ge 0, \ a \in A_{2i} \Big\},$$

the language of infinite words over $2^{\{a\}}$ where *a* must hold in all even positions.

- $\triangleright \ \omega$ -regular expression $G = (\{a\} (\{a\} \mid \emptyset))^{\omega}$.
- Not expressible in LTL. Intuitively, LTL can count up to k ∈ N (e.g., words with at most k occurrences of "a") but not modulo k (e.g., words with "a" every k steps).

Chapter 3: Linear temporal logic

Definition

Automata describing languages of infinite words.

 $\triangleright \omega$ -regular languages.

Definition: non-deterministic Büchi automaton (NBA)

Tuple $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ with

- Q a finite set of states,
- Σ a finite alphabet,
- $\delta \colon Q \times \Sigma \to 2^Q$ a transition function,
- $Q_0 \subseteq Q$ a set of initial states,

• $F \subseteq Q$ a set of accept (or final) states.

Same as before?

Chapter 3: Linear temporal logic

Acceptance condition

 \implies The automaton is identical, but the acceptance condition is different!

Run

A run for an *infinite* word $\sigma = A_0A_1 \ldots \in \Sigma^{\omega}$ is a sequence $q_0q_1 \ldots$ of states such that $q_0 \in Q_0$ and for all $i \ge 0$, $q_{i+1} \in \delta(q_i, A_i)$.

Accepting run

A run is accepting if $q_i \in F$ for infinitely many indices $i \in \mathbb{N}$.

Accepted language of \mathcal{A}

 $\mathcal{L}_{\omega}(\mathcal{A}) = \{ \sigma \in \Sigma^{\omega} \mid \text{ there is an accepting run for } \sigma \text{ in } \mathcal{A} \}.$

Examples

• Words with infinitely many A's: $(B^* A)^{\omega}$.

• Words with finitely many A's: $(A \mid B)^* B^{\omega}$.

Non-deterministic Büchi automaton (NBA). Is there an equivalent DBA?

 \implies We will see that there is not!

Empty language: \emptyset^{ω} .

Modeling an $\omega\text{-regular}$ property

Liveness property: "once a request is provided, eventually a response shall occur."

$$\triangleright \ \{ req, resp \} \subseteq AP \text{ for the TS.}$$

 \triangleright NBA \mathcal{A} uses alphabet 2^{*AP*}.

 \hookrightarrow Succinct representation of multiple transitions using propositional logic. E.g., for $AP = \{a, b\}$,

$$q \xrightarrow{\mathsf{a} \lor b} q'$$
 stands for $q \xrightarrow{\{\mathsf{a}\}} q', \ q \xrightarrow{\{b\}} q', \ \text{and} \ q \xrightarrow{\{\mathsf{a},b\}} q'.$

NBAs and $\omega\text{-regular}$ languages

Theorem

The class of languages accepted by NBAs agrees with the class of $\omega\text{-regular}$ languages.

 \Longrightarrow For any $\omega\text{-regular}$ property, we can build a corresponding NBA.

 \implies For any NBA \mathcal{A} , the language $\mathcal{L}_{\omega}(\mathcal{A})$ is ω -regular.

From ω -regular expressions to NBAs

Idea

Reminder

An ω -regular expression G over Σ has the form

$$G = E_1.F_1^{\omega} + \ldots + E_n.F_n^{\omega}$$
 for $n > 0$

where E_i , F_i are regular expressions over Σ with $\varepsilon \notin \mathcal{L}(F_i)$.

Construction scheme

Use operators on NBAs mimicking operators on ω -regular expressions:

- union of NBAs $(E_1.F_1^{\omega} + E_2.F_2^{\omega})$,
- ω -operator for NFA (F^{ω}),

• concatenation of an NFA and an NBA $(E.F^{\omega})$.

From ω -regular expressions to NBAs

Union of NBAs (sketch)

Goal

 $\mathsf{Mimic} \ E_1.F_1^{\omega} + E_2.F_2^{\omega}.$

Let $\mathcal{A}^1 = (Q^1, \Sigma, \delta^1, Q_0^1, F^1)$ and $\mathcal{A}^2 = (Q^2, \Sigma, \delta^2, Q_0^2, F^2)$ be two NBAs over the same alphabet with disjoint state spaces.

Union

$$\mathcal{A}^1 + \mathcal{A}^2 = (Q^1 \cup Q^2, \Sigma, \delta, Q_0^1 \cup Q_0^2, F^1 \cup F^2)$$
 with $\delta(q, A) = \delta^i(q, A)$ if $q \in Q^i$.

 $\implies \mbox{A word is accepted by } \mathcal{A}^1 + \mathcal{A}^2 \mbox{ iff it is accepted by (at least) one of the automata.}$

$$\Longrightarrow \mathcal{L}_{\omega}(\mathcal{A}^1+\mathcal{A}^2)=\mathcal{L}_{\omega}(\mathcal{A}^1)\cup\mathcal{L}_{\omega}(\mathcal{A}^2).$$

Chapter 3: Linear temporal logic

From $\omega\text{-regular}$ expressions to NBAs

 $\omega\text{-operator}$ for NFA (sketch 1/2)

Goal	
Mimic F^{ω} .	

Let $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ be an NFA with $\varepsilon \notin \mathcal{L}(\mathcal{A})$. Example: NFA accepting $\mathcal{A}^*\mathcal{B}$.

Step 1. If some initial states of \mathcal{A} have incoming transitions or $Q_0 \cap F \neq \emptyset$.

- Introduce new initial state $q_{new} \notin F$.
- Add $q_{new} \xrightarrow{A} q$ iff $q_0 \xrightarrow{A} q$ for some $q_0 \in Q_0$.
- Keep all other transitions of A.

• New
$$Q_0 = \{q_{new}\}$$

From ω -regular expressions to NBAs ω -operator for NFA (sketch 2/2)

Step 2. Build the NBA \mathcal{A}' as follows.

• If $q \xrightarrow{A} q' \in F$, then add $q \xrightarrow{A} q_0$ for all $q_0 \in Q_0$.

• Keep all other transitions of \mathcal{A} .

•
$$Q'_0 = Q_0$$
 and $F' = Q_0$.

 \hookrightarrow In practice, state q_2 is now useless and can be removed.

 $\implies \mathcal{L}_{\omega}(\mathcal{A}') = \mathcal{L}(\mathcal{A})^{\omega}$, i.e., this NBA recognizes $(\mathcal{A}^*B)^{\omega}$.

Chapter 3: Linear temporal logic

From ω -regular expressions to NBAs

Concatenation of an NFA and an NBA (1/2)

Goal	
Mimic $E.F^{\omega}$.	

Let $\mathcal{A}^1 = (Q^1, \Sigma, \delta^1, Q_0^1, F^1)$ be an NFA and $\mathcal{A}^2 = (Q^2, \Sigma, \delta^2, Q_0^2, F^2)$ be an NBA, both over the same alphabet and with disjoint state spaces.

Example: NFA \mathcal{A}^1 with $\mathcal{L}(\mathcal{A}^1) = (AB)^*$ and NBA \mathcal{A}^2 with $\mathcal{L}_{\omega}(\mathcal{A}^2) = (A \mid B)^* B A^{\omega}$.

From ω -regular expressions to NBAs

Concatenation of an NFA and an NBA (2/2)

 $\begin{aligned} & \text{Construction of NBA } \mathcal{A} = (Q = Q^1 \cup Q^2, \Sigma, \delta, Q_0, F = F^2). \\ & \bullet \ Q_0 = \begin{cases} Q_0^1 & \text{if } Q_0^1 \cap F^1 = \emptyset \\ Q_0^1 \cup Q_0^2 & \text{otherwise} \end{cases} \\ & \bullet \ \delta(q, A) = \begin{cases} \delta^1(q, A) & \text{if } q \in Q^1 \text{ and } \delta^1(q, A) \cap F^1 = \emptyset \\ \delta^1(q, A) \cup Q_0^2 & \text{if } q \in Q^1 \text{ and } \delta^1(q, A) \cap F^1 \neq \emptyset \\ \delta^2(q, A) & \text{if } q \in Q^2 \end{cases} \end{aligned}$

 $\implies \mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}(\mathcal{A}^{1}).\mathcal{L}_{\omega}(\mathcal{A}^{2}),$ i.e., this NBA recognizes $(\mathcal{A} B)^{*}(\mathcal{A} \mid B)^{*}B \mathcal{A}^{\omega}.$

Chapter 3: Linear temporal logic

Checking non-emptiness

Criterion for non-emptiness

Let \mathcal{A} be an NBA. Then,

 \implies Can be checked in *linear time* by computing reachable strongly connected components (SCCs).

 \implies Important tool for LTL model checking.

NBAs vs. DBAs

Recall that **DFAs are as expressive as NFAs**. What about DBAs w.r.t. NBAs?

NBAs are strictly more expressive than DBAs

There exists no DBA \mathcal{A} such that $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}((\mathcal{A} \mid B)^* B^{\omega}).$

Words with finitely many A's.

⇒ See the book for the proof. Intuition: by contradiction, if such a DBA existed, it would accept some words with infinitely many A's by exploiting determinism to construct corresponding accepting runs.

Is non-determinism really useful for model checking?

Yes. Consider a persistence property of the form "eventually forever", i.e., LTL formula $\phi = \Diamond \Box a$ for $AP = \{a\}$.

- $\triangleright \quad Words(\phi) = \mathcal{L}_{\omega}((\emptyset \mid \{a\})^* \{a\}^{\omega}).$
- $\triangleright \text{ I.e., exactly } \mathcal{L}_{\omega}((A \mid B)^*B^{\omega}) \text{ for } A = \emptyset \text{ and } B = \{a\}.$

 \Longrightarrow Not expressible with a DBA.

- NBAs describe ω-regular languages.
- Several equally expressive variants exist, with different acceptance conditions: Muller, Rabin, Streett, parity and generalized Büchi automata (GNBAs).

 \implies Will help us for LTL model checking.

Definition

Definition: non-det. generalized Büchi automaton (GNBA)

Tuple $\mathcal{G} = (Q, \Sigma, \delta, Q_0, \mathcal{F})$ with

- Q a finite set of states,
- Σ a finite alphabet,
- $\delta \colon Q \times \Sigma \to 2^Q$ a transition function,
- $Q_0 \subseteq Q$ a set of initial states,

• $\mathcal{F} = \{F_1, \dots, F_k\} \subseteq 2^Q \ (k \ge 0 \text{ and } \forall 0 \le i \le k, \ F_i \subseteq Q).$

Intuition: a GNBA requires to visit each set F_i infinitely often.

Acceptance condition

Accepting run

A run $q_0q_1...$ is accepting if for all $F \in \mathcal{F}$, $q_i \in F$ for infinitely many indices $i \in \mathbb{N}$.

Accepted language of ${\mathcal G}$

 $\mathcal{L}_{\omega}(\mathcal{G}) = \{ \sigma \in \Sigma^{\omega} \mid \text{ there is an accepting run for } \sigma \text{ in } \mathcal{G} \}.$

For k = 0, all runs are accepting. For k = 1, \mathcal{G} is a simple NBA.

 \triangle Observe the difference between $F = \emptyset$ for an NBA (i.e., no run is accepting) and $\mathcal{F} = \emptyset$ for a GNBA (i.e., all runs are accepting). In fact, $\mathcal{F} = \emptyset$ is equivalent to having $\mathcal{F} = \{Q\}$.

Modeling an ω -regular property

Liveness property: "both processes are infinitely often in their critical section."

 \triangleright {*crit*₁, *crit*₂} \subseteq *AP* for the TS.

 $\triangleright \mathcal{F} = \{\{q_2\}, \{q_3\}\}$. Both must be visited infinitely often!

GNBAs vs. NBAs

From GNBA to NBA

For any GNBA \mathcal{G} , there exists an equivalent NBA \mathcal{A} (i.e., $\mathcal{L}_{\omega}(\mathcal{G}) = \mathcal{L}_{\omega}(\mathcal{A})$) of size $|\mathcal{A}| = \mathcal{O}(|\mathcal{G}| \cdot |\mathcal{F}|)$.

Construction scheme starting from \mathcal{G} with $\mathcal{F} = \{F_1, \ldots, F_k\}$.

- **1** Make k copies of Q arranged in k levels.
- 2 At level $i \in \{1, ..., k\}$, keep all transitions leaving states $q \notin F_i$.
- 3 At level $i \in \{1, ..., k\}$, redirect transitions leaving states $q \in F_i$ to level i + 1 (level k + 1 := level 1).
- 4 $Q'_0 = \{ \langle q_0, 1 \rangle \mid q_0 \in Q_0 \}$, i.e., initial states in level 1; and $F' = \{ \langle q, 1 \rangle \mid q \in F_1 \}$, i.e., final states in level 1.

 \implies Works because by construction, F' can only be visited infinitely often if the accept states (F_i) at every level i are visited infinitely often.

Chapter 3: Linear temporal logic

GNBAs vs. NBAs

Example

1 LTL: a specification language for LT properties

2 Büchi automata: automata on infinite words

3 LTL model checking

Back to LTL model checking

Decision problem

Definition: LTL model checking problem

Given a TS \mathcal{T} and an LTL formula ϕ , decide if $\mathcal{T} \models \phi$ or not.

+ if $\mathcal{T} \not\models \phi$ we would like a counter-example (trace witnessing it).

 \implies Model checking algorithm via **automata-based approach** (Vardi and Wolper, 1986).

Intuition.

- \triangleright Represent ϕ as an NBA.
- \triangleright Use it to try to find a path π in \mathcal{T} such that $\pi \not\models \phi$.
- $\vdash \text{ If one is found, a prefix of it is an$ *error trace.* $Otherwise, <math display="block">\mathcal{T} \models \phi.$

Back to LTL model checking

Key observation

$$\models \phi \qquad \text{iff} \quad Traces(\mathcal{T}) \subseteq Words(\phi) \\ \text{iff} \quad Traces(\mathcal{T}) \cap ((2^{AP})^{\omega} \setminus Words(\phi)) = \emptyset \\ \text{iff} \quad Traces(\mathcal{T}) \cap Words(\neg \phi) = \emptyset \\ \text{iff} \quad Traces(\mathcal{T}) \cap \mathcal{L}_{\omega}(\mathcal{A}_{\neg \phi}) = \emptyset \\ \text{iff} \quad \mathcal{T} \otimes \mathcal{A}_{\neg \phi} \models \Diamond \Box \neg F \\ \end{array}$$

Line 3 uses negation for paths.

Line 4 uses the existence of an NBA for any ω -regular language and the fact that all LTL formulae describe ω -regular languages.

 \implies We will see it in the following.

Line 5 reduces the language intersection problem to the satisfaction of a persistence property over the product TS $\mathcal{T} \otimes \mathcal{A}_{\neg \phi}$. The idea is to check that no trace yielded by \mathcal{T} will satisfy the acceptance condition of the NBA $\mathcal{A}_{\neg \phi}$.

Overview of the algorithm

Overview of the automata-based approach for LTL model checking [BK08].

Examples

• GNBA for $\Box \diamondsuit crit_1 \land \Box \diamondsuit crit_2$.

Intuition of the construction (1/3)

Goal

For an LTL formula ϕ , build GNBA \mathcal{G}_{ϕ} over alphabet 2^{AP} such that $\mathcal{L}_{\omega}(\mathcal{G}_{\phi}) = Words(\phi)$.

Assume φ only contains core operators ∧, ¬, ○, U (w.l.o.g., see core syntax) and φ ≠ true (otherwise, trivial GNBA).

• What will be the states of \mathcal{G}_{ϕ} ?

- ▷ Let $\sigma = A_0A_1A_2... \in Words(\phi)$. Idea: "expand" the sets $A_i \subseteq AP$ with subformulae ψ of ϕ .
- \triangleright Obtain $\overline{\sigma} = B_0 B_1 B_2 \dots$ such that

$$\psi \in B_i \quad \Longleftrightarrow \quad A_i A_{i+1} A_{i+2} \dots \models \psi.$$

 $\triangleright \overline{\sigma}$ will be a **run for** σ in the GNBA \mathcal{G}_{ϕ} .

Chapter 3: Linear temporal logic

Intuition of the construction (2/3) • Let $\phi = a \cup (\neg a \land b)$ and $\sigma = \{a\} \{a, b\} \{b\} \dots$ • Letters B_i are subsets of $\{a, \neg a, b, \neg a \land b, \phi\}$ • $\{\neg b, \neg (\neg a \land b), \neg \phi\}$. • $\{a, \neg a, b, \neg a \land b, \phi\}$ $\cup \{\neg b, \neg (\neg a \land b), \neg \phi\}$.

▷ Negations also considered for technical reasons.

- A₀ = {a} is extended with ¬b, ¬(¬a ∧ b) and φ as they hold in σ and no other subformula holds.
- $A_1 = \{a, b\}$ with $\neg(\neg a \land b)$ and ϕ as they hold in $\sigma[1..]$ and no others.
- $A_2 = \{b\}$ with $\neg a, \neg a \land b$ and ϕ as they hold in $\sigma[2..]$ and no others. Etc.

$$\overline{\sigma} = \underbrace{\{a, \neg b, \neg(\neg a \land b), \phi\}}_{B_0} \underbrace{\{a, b, \neg(\neg a \land b), \phi\}}_{B_1} \underbrace{\{\neg a, b, \neg a \land b, \phi\}}_{B_2} \dots$$

 \Rightarrow In practice, this is not done on words, but on the automaton.

Intuition of the construction (3/3)

- Sets B_i will be the states of GNBA \mathcal{G}_{ϕ} .
- $\overline{\sigma} = B_0 B_1 B_2 \dots$ is a run for σ in \mathcal{G}_{ϕ} by construction.
- Accepting condition chosen such that σ̄ is accepting if and only if σ ⊨ φ.

How do we encode the meaning of the logical operators?

- $\triangleright \land$, \neg and true impose *consistent formula sets* B_i in the states (e.g., *a* and $\neg a$ is not possible).
- \triangleright \bigcirc encoded in the *transition relation (must be consistent)*.
- U split according to the expansion law into local condition (encoded in states) and next-step one (encoded in transitions).
- ▷ Meaning of U is the *least solution* of the expansion law (see book) \implies reflected in the choice of *acceptance sets for* \mathcal{G}_{ϕ} .

Closure of a formula

Definition: closure of ϕ

Set $closure(\phi)$ consisting of all sub-formulae ψ of ϕ and their negation $\neg \psi$.

E.g., for
$$\phi = a \cup (\neg a \land b)$$
,
 $closure(\phi) = \{a, \neg a, b, \neg b, \neg a \land b, \neg (\neg a \land b), \phi, \neg \phi\}.$
 $\Rightarrow |closure(\phi)| = O(|\phi|).$
Sets B_i are subsets of $closure(\phi)$.
But not all subsets are interesting!
 \Rightarrow Restriction to elementary sets.

Intuition: a set B is *elementary* if there is a path π such that B is the set of all formulae $\psi \in closure(\phi)$ with $\pi \models \psi$.

Chapter 3: Linear temporal logic

Elementary sets of formulae

Definition: elementary set

A set of sub-formulae $B \subseteq closure(\phi)$ is elementary if:

1 *B* is logically consistent, i.e., for all $\phi_1 \land \phi_2, \psi \in closure(\phi)$,

$$\triangleright \ \phi_1 \land \phi_2 \in B \iff \phi_1 \in B \land \ \phi_2 \in B,$$

$$\triangleright \ \psi \in B \implies \neg \psi \notin B,$$

$$\triangleright$$
 true $\in closure(\phi) \implies$ true $\in B$.

2 *B* is locally consistent, i.e., for all $\phi_1 \cup \phi_2 \in closure(\phi)$,

$$\triangleright \ \phi_2 \in B \implies \phi_1 \cup \phi_2 \in B,$$

$$> \phi_1 \cup \phi_2 \in B \land \phi_2 \notin B \Longrightarrow \phi_1 \in B.$$

3 *B* is maximal, i.e., for all
$$\psi \in closure(\phi)$$
,
 $\forall \ \psi \notin B \implies \neg \psi \in B$.

Elementary sets: examples (1/2)

Let
$$\phi = a \cup (\neg a \land b)$$
:
 $closure(\phi) = \{a, \neg a, b, \neg b, \neg a \land b, \neg (\neg a \land b), \phi, \neg \phi\}.$

• Is $B = \{a, b, \phi\} \subset closure(\phi)$ elementary?

- \hookrightarrow No. Logically and locally consistent but not maximal because $\neg a \land b \in closure(\phi)$, yet $\neg a \land b \notin B$ and $\neg(\neg a \land b) \notin B$.
- Is $B = \{a, b, \neg a \land b, \phi\} \subset closure(\phi)$ elementary?
 - \hookrightarrow No. It is not logically consistent because $a \in B$ and $\neg a \land b \in B$.
- Is $B = \{\neg a, \neg b, \neg (\neg a \land b), \phi\} \subset closure(\phi)$ elementary?

 \hookrightarrow No. Logically consistent but not locally consistent because $\phi = a \cup (\neg a \land b) \in B$ and $\neg a \land b \notin B$ but $a \notin B$.

Elementary sets: examples (2/2) Let $\phi = a \cup (\neg a \land b)$: $closure(\phi) = \{a, \neg a, b, \neg b, \neg a \land b, \neg (\neg a \land b), \phi, \neg \phi\}.$

All elementary sets?

\implies Blackboard construction.

All elementary sets:

$$B_{1} = \{a, b, \neg(\neg a \land b), \phi\},\$$

$$B_{2} = \{a, b, \neg(\neg a \land b), \neg \phi\},\$$

$$B_{3} = \{a, \neg b, \neg(\neg a \land b), \phi\},\$$

$$B_{4} = \{a, \neg b, \neg(\neg a \land b), \neg \phi\},\$$

$$B_{5} = \{\neg a, \neg b, \neg(\neg a \land b), \neg \phi\},\$$

$$B_{6} = \{\neg a, b, \neg a \land b, \phi\}.$$

Chapter 3: Linear temporal logic

From LTL to GNBA Construction of \mathcal{G}_{ϕ} (1/2)

For formula ϕ over AP, let $\mathcal{G}_{\phi} = (Q, \Sigma = 2^{AP}, \delta, Q_0, \mathcal{F})$ where:

•
$$Q = \{B \subseteq closure(\phi) \mid B \text{ is elementary}\},\$$

$$Q_0 = \{ B \in Q \mid \phi \in B \},\$$

•
$$\mathcal{F} = \{F_{\phi_1 \cup \phi_2} \mid \phi_1 \cup \phi_2 \in closure(\phi)\}$$
 with
 $F_{\phi_1 \cup \phi_2} = \{B \in Q \mid \phi_1 \cup \phi_2 \notin B \lor \phi_2 \in B\}.$

Intuition: for any run $B_0B_1B_2...$, if $\phi_1 U \phi_2 \in B_0$, then ϕ_2 must eventually become true (\rightsquigarrow ensured by the acceptance condition).

Observe that
$$\mathcal{F} = \emptyset$$
 if no until in ϕ .
 \implies All runs are accepting in this case.

Construction of \mathcal{G}_{ϕ} (2/2)

The transition relation $\delta: Q \times 2^{AP} \rightarrow 2^Q$ is given by:

• For $A \in 2^{AP}$ and $B \in Q$, if $A \neq B \cap AP$, then $\delta(B, A) = \emptyset$.

Intuition: transitions only exist for the set of propositions that are true in B, i.e., $B \cap AP$ is the only readable letter at state B.

If A = B ∩ AP, then δ(B, A) is the set of all elementary sets of formulae B' satisfying

(i) for every $\bigcirc \psi \in closure(\phi)$, $\bigcirc \psi \in B \iff \psi \in B'$, and

(ii) for every $\phi_1 \cup \phi_2 \in closure(\phi)$,

$$\phi_1 \cup \phi_2 \in B \iff \Big(\phi_2 \in B \lor (\phi_1 \in B \land \phi_1 \cup \phi_2 \in B')\Big).$$

Intuition: (i) and (ii) reflect the semantics of \bigcirc and \bigcup operators, (ii) is based on the expansion law.

Example: $\phi = \bigcirc a$

• $closure(\phi) = \{a, \neg a, \bigcirc a, \neg \bigcirc a\}.$

 \implies Blackboard construction of the GNBA + proof.

$$Q = \{\{a, \bigcirc a\}, \{a, \neg \bigcirc a\}, \{\neg a, \bigcirc a\}, \{\neg a, \neg \bigcirc a\}\},\$$
$$Q_0 = \{\{a, \bigcirc a\}, \{\neg a, \bigcirc a\}\},\$$
$$\mathcal{F} = \emptyset.$$

Chapter 3: Linear temporal logic

Example: $\phi = a \cup b (1/3)$ $closure(\phi) = \{a, \neg a, b, \neg b, a \cup b, \neg (a \cup b)\}.$ \Rightarrow Blackboard construction of the GNBA.

Example: $\phi = a \cup b (2/3)$

Some explanations (see blackboard for more). Let $B_1 = \{a, b, a \cup b\}$, $B_2 = \{\neg a, b, a \cup b\}$, $B_3 = \{a, \neg b, a \cup b\}$, $B_4 = \{\neg a, \neg b, \neg (a \cup b)\}$ and $B_5 = \{a, \neg b, \neg (a \cup b)\}$. $\triangleright \ Q = \{B_1, B_2, B_3, B_4, B_5\}, \ Q_0 = \{B_1, B_2, B_3\}.$ $\triangleright \ \mathcal{F} = \{F_{a \cup b}\} = \{\{B_1, B_2, B_4, B_5\}\}.$ $\hookrightarrow \ \mathcal{G}_{\phi}$ is actually a **simple NBA**.

- \triangleright Labels omitted for readability (recall label is $B \cap AP$).
- ▷ From B_1 (resp. B_2), we can go anywhere because $a \cup b$ is already fulfilled by $b \in B_1$ (resp. B_2).
- \triangleright From B_3 , we need to go where $a \cup b$ holds: B_1 , B_2 or B_3 .
- ▷ From B_4 , we can go anywhere because $\neg(a \cup b)$ is already fulfilled by $\neg a, \neg b \in B_4$.
- \triangleright From B_5 , we need to go where $\neg(a \cup b)$ holds: B_4 or B_5 .

Sample words/runs:

•
$$\sigma = \{a\} \{a\} \{b\}^{\omega} \in Words(\phi)$$
 has accepting run
 $\overline{\sigma} = B_3 B_3 B_2^{\omega}$ in \mathcal{G}_{ϕ} .

• $\sigma = \{a\}^{\omega} \notin Words(\phi)$ has only one run $\overline{\sigma} = B_3^{\omega}$ in \mathcal{G}_{ϕ} and it is not accepting since $B_3 \notin F_{a \cup b}$.

Chapter 3: Linear temporal logic

Construction

Idea: LTL ~~> GNBA ~~> NBA.

Theorem: LTL to NBA

For any LTL formula ϕ over propositions AP, there exists an NBA \mathcal{A}_{ϕ} with $Words(\phi) = \mathcal{L}_{\omega}(\mathcal{A}_{\phi})$ which can be constructed in time and space $2^{\mathcal{O}(|\phi|)}$.

Sketch

Chapter 3: Linear temporal logic

Can we do better? (1/3)

The algorithm presented here is conceptually simple but may lead to unnecessary large GNBAs (and thus NBAs).

Example: the right NBA also recognizes $\bigcirc a$ but is *smaller*.

Can we do better? (2/3)

Example: the right NBA also recognizes a U b but is much smaller.

Can we always do better?

Chapter 3: Linear temporal logic

Can we do better? (3/3)

In practice, there exist more efficient (but more complex) algorithms in the literature.

Still, **the exponential blowup cannot be avoided** in the worst-case!

Theorem: lower bound for NBA from LTL formula

There exists a family of LTL formulae ϕ_n with $|\phi_n| = O(poly(n))$ such that every NBA \mathcal{A}_{ϕ_n} for ϕ_n has at least 2^n states.

\implies **Proof in the next slides.**

From LTL to... NBA Lower bound proof (1/2)

Let AP be arbitrary and *non-empty*, i.e., $|2^{AP}| \ge 2$. Let

$$\mathcal{L}_n = \left\{ A_1 \dots A_n A_1 \dots A_n \sigma \mid A_i \subseteq AP \land \sigma \in (2^{AP})^{\omega} \right\} \quad \text{for } n \ge 0.$$

This language is expressible in LTL, i.e., $\mathcal{L}_n = Words(\phi_n)$ for

$$\phi_n = \bigwedge_{a \in AP} \bigwedge_{0 \le i < n} (\bigcirc^i a \longleftrightarrow \bigcirc^{n+i} a).$$

Polynomial length: $|\phi_n| = O(|AP| \cdot n^2)$. **Claim:** any NBA \mathcal{A} with $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_n$ has at least 2^n states.

Lower bound proof (2/2)

Assume \mathcal{A} is such an automaton. Words $A_1 \dots A_n A_1 \dots A_n \emptyset^{\omega}$ belong to \mathcal{L}_n , hence are accepted by \mathcal{A} .

- \triangleright For every word $A_1 \dots A_n$ of length n, \mathcal{A} has a state $q(A_1 \dots A_n)$ which can be reached after consuming $A_1 \dots A_n$.
- \triangleright From $q(A_1 \ldots A_n)$, it is possible to visit an accept state infinitely often by reading the suffix $A_1 \ldots A_n \emptyset^{\omega}$.

$$\vdash \text{ If } A_1 \dots A_n \neq A'_1 \dots A'_n \text{, then} \\ A_1 \dots A_n A'_1 \dots A'_n \emptyset^{\omega} \notin \mathcal{L}_n = \mathcal{L}_{\omega}(\mathcal{A}).$$

- \triangleright Therefore, states $q(A_1 \dots A_n)$ are all pairwise different.
- ▷ Since each A_i can take $2^{|AP|}$ different values, the number of different sequences $A_1 \dots A_n$ of length n is $(2^{|AP|})^n \ge 2^n$ (by non-emptiness of AP).
- \triangleright Hence, the NBA has at least 2^n states.

LTL vs. NBAs

What have we learned?

Corollary

Every LTL formula expresses an ω -regular property, i.e., for all LTL formula ϕ , $Words(\phi)$ is an ω -regular language.

Why? Because LTL can be transformed to NBA and NBAs coincide with ω -regular languages.

Back to the model checking algorithm for LTL What do we still need?

$$\mathcal{T} \models \phi$$
 iff $Traces(\mathcal{T}) \subseteq Words(\phi)$

$$\mathsf{iff} \quad \mathit{Traces}(\mathcal{T}) \cap ((2^{AP})^{\omega} \setminus \mathit{Words}(\phi)) = \emptyset$$

$$\mathsf{ff} \quad \mathit{Traces}(\mathcal{T}) \cap \mathit{Words}(\neg \phi) = \emptyset$$

$$\mathsf{ff} \quad \mathit{Traces}(\mathcal{T}) \cap \mathcal{L}_\omega(\mathcal{A}_{\neg \phi}) = \emptyset$$

$$\text{iff} \quad \mathcal{T} \otimes \mathcal{A}_{\neg \phi} \models \Diamond \Box \neg F$$

It remains to consider the last line.

Two remaining questions:

- **1** How to compute the product TS $\mathcal{T} \otimes \mathcal{A}_{\neg \phi}$?
- **2** How to check persistence, i.e., $\mathcal{T} \otimes \mathcal{A}_{\neg \phi} \models \Diamond \Box \neg F$?

Product of TS and NBA

Demittion

Definition: product of TS and NBA

Let $\mathcal{T} = (S, Act, \longrightarrow, I, AP, L)$ be a TS without terminal states and $\mathcal{A} = (Q, \Sigma = 2^{AP}, \delta, Q_0, F)$ a non-blocking NBA. Then, $\mathcal{T} \otimes \mathcal{A}$ is the following TS:

$$\mathcal{T}\otimes\mathcal{A}=(S',Act,\longrightarrow',I',AP',L')$$
 where

• $S' = S \times Q$, AP' = Q and $L'(\langle s, q \rangle) = \{q\}$,

• \longrightarrow' is the smallest relation such that if $s \xrightarrow{\alpha} t$ and $q \xrightarrow{L(t)} p$, then $\langle s, q \rangle \xrightarrow{\alpha} \langle t, p \rangle$,

$$I' = \{ \langle s_0, q \rangle \mid s_0 \in I \land \exists q_0 \in Q_0, q_0 \xrightarrow{L(s_0)} q \}.$$

Product of TS and NBA

Example: simple traffic light

Simple traffic light with two modes: *red* and *green*. LTL formula to check $\phi = \Box \Diamond green$.

TS T for the traffic light.

NBA $A_{\neg\phi}$ for $\neg\phi = \Diamond \Box \neg$ green.

 \implies Blackboard construction of $\mathcal{T} \otimes \mathcal{A}_{\neg \phi}$.

Illustration (1/2)

It remains to check $\mathcal{T} \otimes \mathcal{A}_{\neg \phi} \models \Diamond \Box \neg F$ to see that $\mathcal{T} \models \phi$.

Here, $\mathcal{T} \otimes \mathcal{A}_{\neg \phi} \stackrel{?}{\models} \Diamond \Box \neg F$ with $F = \{q_2\}$.

Yes! State $\langle s_1, q_2 \rangle$ can be seen at most once, and state $\langle s_2, q_2 \rangle$ is not reachable. \implies There is no common trace between \mathcal{T} and $\mathcal{A}_{\neg\phi}$. $\implies \mathcal{T} \models \phi$.

Chapter 3: Linear temporal logic

Illustration (2/2)

Slightly revised traffic light: can switch off to save energy. Same formula ϕ (hence same NBA $\mathcal{A}_{\neg\phi}$).

Algorithm: cycle detection

As for checking non-emptiness, we reduce the problem to a cycle detection problem.

Persistence checking and cycle detection

Let \mathcal{T} be a TS without terminal states over AP and Φ a *propositional* formula over AP, then

$$\mathcal{T} \not\models \Diamond \Box \Phi$$

 $\exists s \in Reach(\mathcal{T}), s \not\models \Phi \text{ and } s \text{ is on a cycle in the graph of } \mathcal{T}.$

In particular, it holds for $\Phi = \neg F$ as needed for LTL model checking (with F the acceptance set of the NBA $\mathcal{A}_{\neg\phi}$).

Algorithmic solutions for cycle detection

- **1** Compute the reachable SCCs and check if one contains a state satisfying $\neg \Phi$.
 - \hookrightarrow Linear time but requires to construct entirely the product TS $\mathcal{T} \otimes \mathcal{A}_{\neg \phi}$ which may be very large (exponential).
- 2 Another solution: on-the-fly algorithms.
 - $\vartriangleright \ \ \, \mbox{Construct \mathcal{T} and $\mathcal{A}_{\neg\phi}$ in parallel and simultaneously construct} the reachable fragment of $\mathcal{T}\otimes\mathcal{A}_{\neg\phi}$ via nested depth-first search.}$
 - $\,\hookrightarrow\,$ Construction of the product "on demand".
 - \hookrightarrow More efficient in practice (used in software solutions such as Spin).

 \Longrightarrow See the book for more.

Still, the complexity of LTL model checking remains high!

Wrap-up of the automata-based approach

$$\mathcal{T}\models\phi \qquad ext{ iff } Traces(\mathcal{T})\subseteq \mathit{Words}(\phi)$$

iff $Traces(\mathcal{T}) \cap ((2^{AP})^{\omega} \setminus Words(\phi)) = \emptyset$

$$iff \quad Traces(\mathcal{T}) \cap Words(\neg \phi) = \emptyset$$

$$\mathsf{iff} \quad \mathit{Traces}(\mathcal{T}) \cap \mathcal{L}_\omega(\mathcal{A}_{\neg \phi}) = \emptyset$$

 $\mathsf{iff} \quad \mathcal{T} \otimes \mathcal{A}_{\neg \phi} \models \Diamond \Box \neg F$

Complexity of this approach

The time and space complexity is $\mathcal{O}(|\mathcal{T}|) \cdot 2^{\mathcal{O}(|\phi|)}$.

Complexity of LTL model checking

Complexity of the model checking problem for LTL

The LTL model checking problem is PSPACE-complete.

 $\implies \text{See the book for a proof by reduction from the} \\ \text{membership problem for polynomial-space deterministic} \\ \\ \text{Turing machines.} \\$

Recall that bisimulation and simulation quotienting (Ch. 2) preserve LTL properties while being computable in polynomial time: interesting to do before model checking!

References I

C. Baier and J.-P. Katoen. Principles of model checking. MIT Press, 2008.