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Branching time semantics: a reminder

{a}

∅

{a, b}

{b}

Branching time semantics deals with
the execution (or computation) tree.

� Infinite unfolding considering all
branching possibilities.

� E.g., do all executions always have the

possibility to eventually reach {b} ? Yes.

↪→ Cannot be expressed as a LT property
(intuitively, requires branching).

{a}

∅

{a} {b}

{b}

{b}

{a, b}

∅ {a} {a, b}

{a} {b} {a, b} ∅ {a} {a, b}
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Intuition
In LTL, s |= φ means that all paths starting in s satisfy φ.
� Implicit universal quantification.
� Could be made explicit by writing s |= ∀φ.

What if we want to talk about some paths?
� E.g., does there exist a path satisfying φ starting in s?
� Could be expressed using the duality between universal and

existential quantification: s |= ∃φ iff s 6|= ∀¬φ.

What if the property is more complex? E.g., do all executions
always have the possibility to eventually reach {b} ?

� s |= ∀�♦b does not work as it requires all paths to always

return in {b} , not just to have the possibility to do so.

� Not expressible in LTL. We need nesting of path
quantifiers (∀,∃).

↪→ s |= ∀�∃♦b is a CTL formula: “for all paths, it is always the
case (i.e., at every step along the branch) that there exists a
path (which can be branching) that eventually reaches b.”
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CTL vs. LTL
Different notions of time

In LTL, we reason about paths and their traces.

� Time is linear: along a trace, any point has only one possible
future.

In CTL, we reason about the computation tree and its
branching behavior.

� Time is branching: any point along an execution (i.e., node in
the tree) has several possible futures.

=⇒ We will see that the expressiveness of LTL and CTL are
incomparable. . .

. . . and we will sketch CTL∗, a logic which subsumes both LTL and
CTL.
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CTL in a nutshell (1/2)

In CTL, we have two types of formulae.

State formulae are assertions about atomic propositions in states
and their branching structure.

↪→ Written in uppercase Greek letters: e.g., Φ, Ψ.

Atomic propositions a ∈ AP (represented as {a} , {b} , etc).

Boolean combinations of formulae: ¬Φ, Φ ∧Ψ, Φ ∨Ψ.

Path quantification using path formulae.
↪→ Path formulae written in lowercase Greek letters: e.g., φ, ψ.

Existential quantification ∃φ.

φ

Universal quantification ∀φ.

φ
φ

φ

φ
φ

φ
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CTL in a nutshell (2/2)
Path formulae use temporal operators.

next ©Φ
Φarbitrary arbitrary arbitrary arbitrary

until ΦUΨ
Φ ∧ ¬ΨΦ ∧ ¬Ψ Ψ arbitrary arbitrary

Differences between CTL path formulae and LTL formulae

Path formulae

cannot be combined with boolean connectives;

do not allow nesting of temporal modalities.

In CTL, every temporal operator must be in the immediate
scope of a path quantifier!

E.g., s |= ∀�∃♦b is a valid CTL formula but s |= ∀�♦b is not.
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CTL syntax
Core syntax

CTL syntax

Given the set of atomic propositions AP, CTL state formulae are
formed according to the following grammar:

Φ ::= true | a | Φ ∧Ψ | ¬Φ | ∃φ | ∀φ

where a ∈ AP and φ is a path formula. CTL path formulae are
formed according to the following grammar:

φ ::=©Φ | ΦUΨ

where Φ and Ψ are state formulae.

=⇒ The syntax enforces the presence of a path quantifier
before every temporal operator.

↪→ When we just say CTL formula, we mean CTL state formula.

Chapter 4: Computation tree logic Mickael Randour 8 / 71



CTL CTL model checking CTL vs. LTL CTL∗

CTL syntax
Examples (1/2)

CTL syntax reminder

Φ ::= true | a | Φ ∧Ψ | ¬Φ | ∃φ | ∀φ φ ::=©Φ | ΦUΨ

Is Φ = ∃©a a valid CTL formula?

� Yes, because φ =©a is a valid path formula, hence Φ = ∃φ is
a valid state formula.

Is Φ = a ∧ b a valid CTL formula?

� Yes, because Ψ1 = a and Ψ2 = b are valid state formulae,
hence Φ = Ψ1 ∧Ψ2 is a valid state formula.

Is Φ = ∀(a ∧ ∃© b) a valid CTL formula?

� No, because φ = a ∧ ∃© b is not a valid path formula (should
be ©Ψ or Ψ1 UΨ2).
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CTL syntax
Examples (2/2)

CTL syntax reminder

Φ ::= true | a | Φ ∧Ψ | ¬Φ | ∃φ | ∀φ φ ::=©Φ | ΦUΨ

Is Φ = ∃((∀© a) U (a ∧ b)) a valid CTL formula?

� Yes, because Ψ1 = ∀© a and Ψ2 = a ∧ b are valid state
formulae, hence φ = Ψ1 UΨ2 is a valid path formula, hence
Φ = ∃φ is a valid state formula.

Is Φ = ∃© (aU b) a valid CTL formula?

� No, because φ = aU b is a valid path formula whereas we
require a state formula at this position. I.e., one needs to
insert quantification for the U operator.
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CTL syntax
Derived operators

Boolean operators false, ∨, ⊕, →, ↔ derived as for LTL.

Other derivations also similar:

∃♦Φ ≡ ∃(true UΦ) *potentially*

∀♦Φ ≡ ∀(true UΦ) *inevitably*

∃�Φ ≡ ¬∀♦¬Φ *potentially always*

∀�Φ ≡ ¬∃♦¬Φ *invariantly*

∃(ΦWΨ) ≡ ¬∀
(
(Φ ∧ ¬Ψ) U (¬Φ ∧ ¬Ψ)

)
*weak until*

∀(ΦWΨ) ≡ ¬∃
(
(Φ ∧ ¬Ψ) U (¬Φ ∧ ¬Ψ)

)
Would ∀�Φ ≡ ∀¬♦¬Φ be a correct derivation (similar to LTL)?

No! Because ¬ cannot be applied to path formulae.

=⇒ Derivations are based on the duality between ∃ and ∀.
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CTL syntax
Precedence order

Same rules as for LTL, with quantifiers ∃, ∀ directly linked to the
following path formula.
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Formalizing LT/BT properties in CTL
Safety

TS for semaphore-based mutex [BK08] (Ch. 2).

� AP = {crit1, crit2}, natural labeling.

� In LTL, ¬♦(crit1 ∧ crit2) or �(¬crit1 ∨ ¬crit2).

↪→ In CTL, ¬∃♦(crit1 ∧ crit2) or ∀�(¬crit1 ∨ ¬crit2).
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Formalizing LT/BT properties in CTL
Liveness

Beverage vending machine [BK08] (Ch. 2).

� AP = {paid, drink}, natural labeling.

� In LTL, �♦drink.

↪→ In CTL, ∀�∀♦drink. Intuitively, for all paths, it is true at
every step that all futures will eventually reach drink.

=⇒ Formal proof after proper definition of the semantics.
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Formalizing LT/BT properties in CTL
Persistence (1/3)

{a}

{a}

{a}

{a, c}

{b}

Ensure that from some point on, a holds but b does not.

� In LTL, ♦�(a ∧ ¬b).

↪→ In CTL. . . ?

This property cannot be expressed in CTL!

=⇒ Informal argument in the next slide. . .
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Formalizing LT/BT properties in CTL
Persistence (2/3)

Take a simpler TS T :

s1 s2 s3

{a} {b} {a}

It clearly satisfies LTL formula
φ = ♦�a.

As all paths, the highlighted one
must satisfy ♦∀�a for Φ to hold.

But there is no state along
this path where ∀�a holds as
we can always branch to b!
=⇒ T 6|= Φ.

Best guess for equivalent CTL
formula: Φ = ∀♦∀�a (we want
this to be true on all paths).

But what is the execution
tree?
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Formalizing LT/BT properties in CTL
Persistence (3/3)

Intuition.

In LTL, time is linear .
� Either we have a path that do branch to b, thus �a is true

after b. Or we never branch and �a is true from the initial
state.

In CTL, time is branching .
� We have to use the ∀ quantifier (as we want to characterize all

paths).
� But then ♦∀�a asks to reach a state where all possible

futures satisfy �a.
� Not possible because of the possibility of branching.

Hence, even if all branches satisfy ♦�a, the CTL formula
requires the additional (and not verified) existence of nodes
in the tree whose subtrees only contain paths satisfying �a.
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Formalizing LT/BT properties in CTL
Typical BT property

{a}

{a}

{a}

{a, c}

{b}

Along all paths, it is always possible to reach {a, c} .

� Not expressible in LTL: in linear time, either you reach or you
do not. Reasoning about possible futures requires branching
time.

↪→ In CTL, ∀�∃♦(a ∧ c).
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CTL semantics
Examples

∃© blue ∀♦red ∃�green

∀�yellow ∃(green U∀�violet) ∀
(
(red ∨ blue) U green

)
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CTL semantics
For state formulae

Let T = (S ,Act,−→, I,AP,L) be a TS without terminal states,
a ∈ AP, s ∈ S , Φ and Ψ be CTL state formulae and φ be a CTL
path formula.

Satisfaction for state formulae

s |= Φ iff formula Φ holds in state s.

s |= true

s |= a iff a ∈ L(s)

s |= Φ ∧Ψ iff s |= Φ and s |= Ψ

s |= ¬Φ iff s 6|= Φ

s |= ∃φ iff ∃π ∈ Paths(s), π |= φ

s |= ∀φ iff ∀π ∈ Paths(s), π |= φ
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CTL semantics
For path formulae

Let π = s0s1s2 . . . .

Satisfaction for path formulae

π |= φ iff path π satisfies φ.

π |=©Φ iff s1 |= Φ

π |= ΦUΨ iff ∃ j ≥ 0, s j |= Ψ and ∀ 0 ≤ i < j , s i |= Φ

π |= ♦Φ iff ∃ j ≥ 0, s j |= Φ

π |= �Φ iff ∀ j ≥ 0, s j |= Φ

Chapter 4: Computation tree logic Mickael Randour 21 / 71



CTL CTL model checking CTL vs. LTL CTL∗

CTL semantics
For transition systems

Let T = (S ,Act,−→, I,AP,L) be a TS and Φ a CTL state
formula over AP.

Definition: satisfaction set

The satisfaction set SatT (Φ) (or briefly, Sat(Φ)) for formula Φ is

Sat(Φ) = {s ∈ S | s |= Φ}.

TS T satisfies Φ, denoted T |= Φ, iff Φ holds in all initial states,
i.e.,

T |= Φ iff I ⊆ Sat(Φ).
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Example

{a}

{a}

{a}

{a, c}

{b}

Notice the two initial states.

T |= ∀© a T 6|= ∃♦b T 6|= ∀(aU b)

T 6|= ∃(aU b) T 6|= ∀�a T |= ∀�∃♦∀�∀♦c
T |= ∃�a T |= ∀(aW b) T |= ∀�(c → ∀© a)

T |= ∃(aU c) T |= ∃�¬b T |= ∃�∃♦b → ¬c

=⇒ Blackboard solution.
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Playing with the semantics
Infinitely often (1/3)

Earlier, we claimed that the CTL formula Φ = ∀�∀♦a is equivalent
to the LTL formula φ = �♦a, i.e., for all TS T , T |= Φ iff T |= φ.

=⇒ Let’s prove it!

We prove the more precise statement: ∀ s ∈ S , s |= Φ⇐⇒ s |= φ,
which implies the result for TSs.
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Playing with the semantics
Infinitely often (2/3)

s |= Φ =⇒ s |= φ.

1 Let s |= Φ. We must prove that ∀π = s0s1s2 . . . ∈ Paths(s),
π |= φ, i.e., for all j ≥ 0, there exists i ≥ j such that s i |= a.

2 Since s |= ∀�∀♦a and π ∈ Paths(s), we have π |= �∀♦a.

3 Hence, s j |= ∀♦a.

4 Since π[j ..] = s js j+1 . . . ∈ Paths(s j), we have that
π[j ..] |= ♦a.

5 Hence, there exists i ≥ j such that s i |= a.

6 This holds for all j so we are done.
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Playing with the semantics
Infinitely often (3/3)

s |= Φ ⇐= s |= φ.

1 Let s |= φ. We must prove that s |= ∀�∀♦a, i.e, that
∀π = s0s1s2 . . . ∈ Paths(s), π |= �∀♦a.

2 I.e., that for all j ≥ 0, s j |= ∀♦a.

3 Let j ≥ 0 and fix any path π′ = s js
′
j+1s

′
j+2 . . . ∈ Paths(s j).

We must show that π′ |= ♦a.

4 But, then π′′ = s0s1 . . . s js
′
j+1s

′
j+2 . . . ∈ Paths(s). Hence,

π′′ |= �♦a by hypothesis.

5 Hence, there exists i > j such that s ′i |= a.

6 Therefore, π′ |= ♦a.

7 This holds for any path π′ ∈ Paths(s j) so s j |= ∀♦a.

8 Since it holds for all j , π |= �∀♦a.

9 Finally, it holds for all π ∈ Paths(s), thus s |= Φ.
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Semantics of negation
States

Negation for states

For s ∈ S and a CTL formula Φ over AP,

s 6|= Φ ⇐⇒ s |= ¬Φ.

Intuitively, due to the duality between ∀ and ∃ and the semantics
of negation for path formulae (see LTL, either a path satisfies φ or
it satisfies ¬φ).
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Semantics of negation
Transition systems

Negation for TSs

For TS T = (S ,Act,−→, I,AP,L) and a CTL formula Φ over AP:

T 6|= Φ
6⇓ ⇑

T |= ¬Φ

We have that T 6|= Φ iff I * Sat(Φ)

iff ∃s ∈ I, s 6|= Φ

iff ∃s ∈ I, s |= ¬Φ

But it may be the case that T 6|= Φ and T 6|= ¬Φ if

∃s1, s2 ∈ I such that s1 |= Φ and s2 |= ¬Φ.
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Semantics of negation
Example

s1 s2

{a} ∅

Consider CTL formula Φ = ∃�a. Do we have that T |= Φ?

Beware of erroneous intuition!
T |= ∃φ 6⇐⇒ ∃σ ∈ Traces(T ), σ |= φ.

Indeed, Φ must hold in all initial states.

↪→ Here it does not in s2 =⇒ T 6|= Φ.

Do we have that T |= ¬Φ = ∀♦¬a?

↪→ No. Because of path (s1)ω, s1 6|= ¬Φ =⇒ T 6|= ¬Φ.

Surprising equivalence.
T 6|= ¬∃φ ⇐⇒ ∃σ ∈ Traces(T ), σ |= φ.
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Equivalence of CTL formulae
Definition

Equivalence of CTL formulae

CTL (state) formulae Φ and Ψ over AP are equivalent, denoted
Φ ≡ Ψ, if and only if, for all TS T over AP,

Sat(Φ) = Sat(Ψ).

In particular, Φ ≡ Ψ ⇐⇒ (∀T , T |= Φ ⇐⇒ T |= Ψ).

=⇒ Let us review some computational rules.
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Equivalence of CTL formulae
Duality for path quantifiers

∀© Φ ≡ ¬∃©¬Φ
∃© Φ ≡ ¬∀©¬Φ
∀♦Φ ≡ ¬∃�¬Φ
∃♦Φ ≡ ¬∀�¬Φ

∀(ΦUΨ) ≡ ¬∃(¬ΨU (¬Φ ∧ ¬Ψ)) ∧ ¬∃�¬Ψ
≡ ¬∃((Φ ∧ ¬Ψ) U (¬Φ ∧ ¬Ψ)) ∧ ¬∃�(Φ ∧ ¬Ψ)

≡ ¬∃((Φ ∧ ¬Ψ) W (¬Φ ∧ ¬Ψ))

∃(ΦUΨ) ≡ ¬∀((Φ ∧ ¬Ψ) W (¬Φ ∧ ¬Ψ))
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Equivalence of CTL formulae
Distribution

∀�(Φ ∧Ψ) ≡ ∀�Φ ∧ ∀�Ψ

∃♦(Φ ∨Ψ) ≡ ∃♦Φ ∨ ∃♦Ψ

Similar to LTL �(φ ∧ ψ) ≡ �φ ∧�ψ and ♦(φ ∨ ψ) ≡ ♦φ ∨ ♦ψ.

But not all laws can be lifted!

∃�(Φ ∧Ψ) 6≡ ∃�Φ ∧ ∃�Ψ

∀♦(Φ ∨Ψ) 6≡ ∀♦Φ ∨ ∀♦Ψ

{c, d}

{a, c} {b, d}

T |= ∀♦(a ∨ b) but T 6|= ∀♦a ∨ ∀♦b
T |= ∃�c ∧ ∃�d but T 6|= ∃�(c ∧ d)
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Equivalence of CTL formulae
Expansion laws

In LTL, we had:

φUψ ≡ ψ ∨ (φ ∧© (φUψ))

♦φ ≡ φ ∨©♦φ
�φ ≡ φ ∧©�φ

In CTL, we have:

∀(ΦUΨ) ≡ Ψ ∨ (Φ ∧ ∀© ∀(ΦUΨ))

∀♦Φ ≡ Φ ∨ ∀© ∀♦Φ
∀�Φ ≡ Φ ∧ ∀© ∀�Φ

∃(ΦUΨ) ≡ Ψ ∨ (Φ ∧ ∃© ∃(ΦUΨ))

∃♦Φ ≡ Φ ∨ ∃© ∃♦Φ
∃�Φ ≡ Φ ∧ ∃© ∃�Φ

Chapter 4: Computation tree logic Mickael Randour 33 / 71



CTL CTL model checking CTL vs. LTL CTL∗

Existential normal form (ENF)
ENF for CTL

Goal

Retain the full expressiveness of CTL but permit only existential
quantifiers (thanks to negation and duality).

ENF for CTL

Given atomic propositions AP, CTL formulae in existential normal
form are given by:

Φ ::= true | a | Φ ∧Ψ | ¬Φ | ∃© Φ | ∃(ΦUΨ) | ∃�Φ

where a ∈ AP.

Every CTL formula can be rewritten in ENF. . . but the
translation can cause an exponential blowup (because of the
rewrite rule for ∀U ).
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Positive normal form (PNF)
Weak-until PNF for CTL (1/2)

Goal

Retain the full expressiveness of CTL but permit only negations of
atomic propositions.

Weak-until PNF for LTL

Given atomic propositions AP, CTL state formulae in weak-until
positive normal form are given by:

Φ ::= true | false | a | ¬a | Φ ∧Ψ | Φ ∨Ψ | ∃φ | ∀φ

where a ∈ AP and path formulae are given by:

φ ::=©Φ | ΦUΨ | ΦWΨ.
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Positive normal form (PNF)
Weak-until PNF for CTL (2/2)

Every CTL formula can be rewritten in PNF. . . but the
translation can cause an exponential blowup (because of the
rewrite rules for ∀U and ∃U ).

=⇒ As for LTL, can be avoided by introducing a “release”
operator.

∃(ΦRΨ) ≡ ¬∀((¬Φ) U (¬Ψ))

∀(ΦRΨ) ≡ ¬∃((¬Φ) U (¬Ψ))
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CTL model checking
Decision problem

Definition: CTL model checking problem

Given a TS T and a CTL formula Φ, decide if T |= Φ or not.

=⇒ Model checking algorithm via recursive computation of the
satisfaction set Sat(Φ).

Intuition.

� Use the parse tree of Φ (decomposition in subformulae).

� Compute Sat(a) for all leaves in the tree (a ∈ AP).

� Compute satisfaction sets of nodes in a bottom-up fashion,
using the satisfactions sets of their children.

� In the root, obtain Sat(Φ) and check that I ⊆ Sat(Φ) to
conclude whether T |= Φ or not.
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Toy example
s1 s2 s3 s4 s5

{c} {a} {b} {a, b} ∅

CTL formula Φ = c ∨ ∃♦(a ∧ b).

=⇒ We have to check that I = {s1, s2} ⊆ Sat(Φ).
Parse tree of Φ:

∨

c ∃♦

∧

a b

Sat(c) = {s1}

Sat(a) = {s2, s4} Sat(b) = {s3, s4}

Sat(a ∧ b) = Sat(a) ∩ Sat(b)
= {s4}

Sat(∃♦(a ∧ b)) = Sat(∃♦Sat(a ∧ b))

= {s2, s3, s4}

Sat(Φ) = Sat(c) ∪ Sat(∃♦(a ∧ b))

= {s1, s2, s3, s4}

=⇒ Finally I ⊆ Sat(Φ), thus T |= Φ.
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Formulae in ENF
Throughout this section, we assume formulae are written in ENF.

Reminder: ENF for CTL

Given atomic propositions AP, CTL formulae in existential normal
form are given by:

Φ ::= true | a | Φ ∧Ψ | ¬Φ | ∃© Φ | ∃(ΦUΨ) | ∃�Φ

where a ∈ AP.

Assume we have Sat(Φ) and Sat(Ψ), we need algorithms for:

Sat(Φ∧Ψ) and Sat(¬Φ): easy, intersection and complement.

Sat(∃© Φ), Sat(∃(ΦUΨ)) and Sat(∃�Φ).

In practice, one can either rewrite any formula in ENF (but with a
potential blow-up), or design specific algorithms to deal with ∀
quantifiers (based on similar ideas).

Chapter 4: Computation tree logic Mickael Randour 40 / 71



CTL CTL model checking CTL vs. LTL CTL∗

Main algorithm

Key concept: bottom-up traversal of the parse tree of Φ.
For formulae in ENF,

� leaves can be true or a ∈ AP,

� inner nodes can be ¬, ∧, ∃© , ∃U , or ∃�.

Each node represents a subformula Ψ of Φ and Sat(Ψ) is the
set of states where Ψ holds.

Intuition

When we compute Sat(Ψ) in a node, it is as if we label all states of
Sat(Ψ) with a new proposition aΨ such that aΨ ∈ L(s) iff s |= Ψ.
This label can then be used to compute the parent formula.

E.g., computing Sat(∃©Ψ) is now computing Sat(∃© aΨ): there
is no need to reconsider the child formula Ψ, just the
corresponding labeling of states.
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Characterization of Sat (1/2)

Let T = (S ,Act,−→, I,AP,L) be a TS without terminal state.
For all CTL formulae Φ, Ψ over AP, we have:

Sat(true) = S

Sat(a) = {s ∈ S | a ∈ L(s)} for a ∈ AP

Sat(Φ ∧Ψ) = Sat(Φ) ∩ Sat(Ψ)

Sat(¬Φ) = S \ Sat(Φ)

Sat(∃© Φ) = {s ∈ S | Post(s) ∩ Sat(Φ) 6= ∅}
↪→ All states that have a successor in Sat(Φ).
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Characterization of Sat (2/2)

Sat(∃(ΦUΨ)) is the smallest subset T of S such that

1 Sat(Ψ) ⊆ T ,

2 s ∈ Sat(Φ) ∧ Post(s) ∩ T 6= ∅ =⇒ s ∈ T .

↪→ (1) must hold because ΦUΨ is satisfied directly, and (2) says
that if Φ holds now and there exists a successor where ∃(ΦUΨ)

holds, then ∃(ΦUΨ) holds also now (cf. expansion law).

Sat(∃�Φ) is the largest subset T of S such that

1 T ⊆ Sat(Φ),

2 s ∈ T =⇒ Post(s) ∩ T 6= ∅.
↪→ (1) must hold because states outside Sat(Φ) directly falsify

∃�Φ, and (2) says that if ∃�Φ holds now, then there must exist a
successor where ∃�Φ still holds (cf. expansion law).
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Computation of Sat: algorithm (1/3)

Input: TS T = (S ,Act,−→, I,AP,L) and CTL formula Φ in ENF
Output: Sat(Φ) = {s ∈ S | s |= Φ}

if Φ = true then
return S

else if Φ = a ∈ AP then
return {s ∈ S | a ∈ L(s)}

else if Φ = Ψ1 ∧Ψ2 then
return Sat(Ψ1) ∩ Sat(Ψ2)

else if Φ = ¬Ψ then
return S \ Sat(Ψ)

else if Φ = ∃©Ψ then
return {s ∈ S | Post(s) ∩ Sat(Ψ) 6= ∅}

...
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Computation of Sat: algorithm (2/3)

...
else if Φ = ∃(Ψ1 UΨ2) then

T := Sat(Ψ2) // smallest fixed point computation
while A := {s ∈ Sat(Ψ1) \ T | Post(s) ∩ T 6= ∅} 6= ∅ do

T := T ∪ A
return T

...

↪→ We iteratively compute an increasing sequence of sets Ti s.t.
T0 = Sat(Ψ2) and Ti+1 = Ti ∪ {s ∈ Sat(Ψ1) | Post(s) ∩ Ti 6= ∅},

i.e., Ti represents all states that can reach Sat(Ψ2) in at most i
steps via a path of states in Sat(Ψ1).
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Computation of Sat: algorithm (3/3)

...
else if Φ = ∃�Ψ then

T := Sat(Ψ) // largest fixed point computation
while A := {s ∈ T | Post(s) ∩ T = ∅} 6= ∅ do

T := T \ A
return T

↪→ We iteratively compute a decreasing sequence of sets Ti s.t.
T0 = Sat(Ψ) and Ti+1 = Ti ∩ {s ∈ Sat(Ψ) | Post(s) ∩ Ti 6= ∅},

i.e., Ti represents all states from which there exists a path staying
in Sat(Ψ) for at least i steps.
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Examples
Φ = ∃♦((a ∨ c) ∧ ¬b) (1/2)

s1 s2 s3

s4 s5 s6

s1 s2 s3

s4 s5 s6

s1 s2 s3

s4 s5 s6

{b} ∅ {a}

{a, b, c} {a, b} {b, c}

s1 s2 s3

s4 s5 s6

{b} ∅ {a}

{a, b, c} {a, b} {b, c}

Formula Φ = ∃♦((a ∨ c) ∧ ¬b) ≡ ∃
(

true︸︷︷︸
Ψ4

U

Ψ3︷ ︸︸ ︷(
(a ∨ c)︸ ︷︷ ︸

Ψ1

∧ ¬b︸︷︷︸
Ψ2

) )
1 Sat(Ψ1) = Sat(a) ∪ Sat(c) = {s3, s4, s5, s6}
2 Sat(Ψ2) = S \ Sat(b) = {s2, s3}
3 Sat(Ψ3) = Sat(Ψ1) ∩ Sat(Ψ2), Sat(Ψ4) = S

4 Sat(Φ) = ∃Ψ4 UΨ3 =⇒ Algorithm in the next slide.
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Examples
Φ = ∃♦((a ∨ c) ∧ ¬b) (2/2)

s1 s2s2 s3s3

s4 s5s5 s6s6

{b} ∅ {a}

{a, b, c} {a, b} {b, c}

We obtain Sat(Φ) = ∃Ψ4 UΨ3 via smallest fixed point
computation:

� T0 = Sat(Ψ3) = {s3}
� T1 = T0 ∪ {s ∈ Sat(Ψ4) | Post(s) ∩ T0 6= ∅} = {s2, s3}
� T2 = T1 ∪ {s ∈ Sat(Ψ4) | Post(s) ∩ T1 6= ∅} = {s2, s3, s5}
� T3 = T2 ∪{s ∈ Sat(Ψ4) | Post(s)∩T2 6= ∅} = {s2, s3, s5, s6}
� T4 = T3 ∪ {s ∈ Sat(Ψ4) | Post(s) ∩ T3 6= ∅} = T3 = Sat(Φ)

I = {s3, s5, s6} ⊆ Sat(Φ) =⇒ T |= Φ = ∃♦((a ∨ c) ∧ ¬b)
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Examples
Φ = ∃�∃© b

s1

s2 s3

s4 s5

s2 s3

s4 s5

s2 s3

s4 s5

{a}

{a, b} {a}

{b} {a, b}

s1

s2 s3

s4 s5

s2 s3

s4 s5

s2 s3

s4 s5

{a}

{a, b} {a}

{b} {a, b}

Formula Φ = ∃�
Ψ︷ ︸︸ ︷
∃© b

1 Sat(b) = {s2, s4, s5}
2 Sat(Ψ) = {s ∈ S | Post(s) ∩ Sat(b) 6= ∅} = {s3, s4, s5}
3 We obtain Sat(Φ) = ∃�Ψ via largest fixed point computation:

� T0 = Sat(Ψ) = {s3, s4, s5}
� T1 = T0 ∩ {s ∈ Sat(Ψ) | Post(s) ∩ T0 6= ∅} = {s4, s5}
� T2 = T1 ∩ {s ∈ Sat(Ψ) | Post(s) ∩ T1 6= ∅} = T1 = Sat(Φ)

I = {s3, s5, s6} * Sat(Φ) =⇒ T 6|= Φ = ∃�∃© b
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Complexity of CTL model checking
Clever implementations of algorithms for ∃(Ψ1 UΨ2) and
∃�Ψ take time O(|S |+ | −→ |).

=⇒ See the book for detailed algorithms.

Main algorithm to compute Sat(Φ) is a bottom-up traversal
of the parse tree: O(|Φ|).

Complexity of the algorithm

The time complexity is O(|T | · |Φ|).

=⇒ CTL model checking is in polynomial time!

=⇒ So. . . much more efficient than LTL which is
PSPACE-complete?

=⇒ Not really. . . need to consider the whole picture,
including succinctness!
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1 CTL: a specification language for BT properties

2 CTL model checking

3 CTL vs. LTL

4 CTL∗
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Expressiveness
Incomparable logics

We have seen that:

some properties are expressible in LTL but not in CTL (e.g.,
φ = ♦�a),

some properties are expressible in CTL but not in LTL (e.g.,
Φ = ∀�∃♦a),

some properties can be expressed in both logics (e.g.,
φ = �♦a is equivalent to Φ = ∀�∀♦a).

LTL CTL

Can we characterize the intersection?
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Expressiveness
Equivalent formulae

Recall the notion of equivalent formulae.

Definition: equivalent formulae

CTL formula Φ and LTL formula φ over AP are equivalent,
denoted Φ ≡ φ if for all TS T , T |= Φ ⇐⇒ T |= φ.

Here is a way to know if a CTL formula admits an equivalent one
in LTL.

Criterion for transformation from CTL to LTL

Let Φ be a CTL formula, and φ be the LTL formula obtained by
eliminating all path quantifiers from Φ. Then, either Φ ≡ φ or
there exists no LTL formula equivalent to Φ.
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Expressiveness
Comparing LTL and CTL: examples (1/2)

We proved that φ = �♦a ≡ Φ = ∀�∀♦a, and indeed, φ is
obtained from Φ by removing all quantifiers.

We argued that Φ = ∀♦∀�a 6≡ φ = ♦�a. Hence, there is no
equivalent to Φ in LTL.
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Expressiveness
Comparing LTL and CTL: examples (2/2)

s1s2s3

s4

s5

{a}{a}∅

∅

{a}

Consider formula Φ = ∀♦(a ∧ ∀© a) and its potential LTL
equivalent, φ = ♦(a ∧©a).
T |= φ because s1 |= φ:
� All paths in Paths(s1) contain s1 −→ s2, or s5 −→ s1, or both.
� Any suffix s1s2 . . . satisfies (a ∧©a), and so does any suffix

s5s1 . . .
� Hence all paths satisfy φ.
T 6|= Φ because of path s1s2s

ω
3 .

� None of s1, s2 and s3 satisfies (a ∧ ∀© a) (look at s4 for s1).

=⇒ CTL formula Φ = ∀♦(a ∧ ∀© a) has no LTL equivalent.
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Model checking efficiency

Let T = (S ,Act,−→, I,AP,L) be a TS, and Φ (resp. φ) a CTL
(resp. LTL) formula over AP.

Model checking Φ requires linear time in both the model and
the formula: O(|T | · |Φ|).

Model checking φ requires linear time in the model but
exponential time in the formula: O(|T |) · 2O(|Φ|).

Hence, CTL model checking is more efficient, right?

No!

Because LTL can be exponentially more succinct!

↪→ That is, given a CTL formula, the LTL equivalent can be
exponentially shorter.
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LTL can be exponentially more succinct than CTL
Proof sketch (1/3)

1 Take an NP-complete problem and show that it can be solved
by model checking a polynomial-size LTL formula on a
polynomial-size model.

2 Show that the LTL formula has an equivalent in CTL (of
exponential size).

3 If an equivalent CTL formula of polynomial size existed, we
would be able to solve the NP-complete problem in
polynomial time, hence to prove that P = NP.

Hence, unless P = NP, some properties can be expressed in
LTL through exponentially shorter formulae than in CTL.

Chosen problem: deciding the existence of a Hamiltonian
path (i.e., visiting each vertex exactly once) in a directed

graph.
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LTL can be exponentially more succinct than CTL
Proof sketch (2/3)

v1 v2

v3 v4

Directed graph.

v1 v2

v3 v4

g

{p1} {p2}

{p3} {p4}

{pg}

Transition system.

Encoding of the problem:

� Make all vertices initial states and add an additional state g
reachable from all other states.

� Label of vertex vi = pi , label of g = pg .
� Let n be the number of vertices of the graph. Consider LTL

formula φ = (♦p1 ∧ . . . ∧ ♦pn) ∧©npg .
� Paths satisfying φ in the TS correspond to Hamiltonian paths

in the graph.
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LTL can be exponentially more succinct than CTL
Proof sketch (3/3)

Reduction:

� The graph contains a Hamiltonian path iff T 6|= ¬φ with
φ = (♦p1 ∧ . . . ∧ ♦pn) ∧©npg .

� Observe that TS T and formula φ are both of polynomial size.
� No contradiction with NP-completeness since LTL model

checking is PSPACE-complete.

Encoding in CTL?

� Yes but enumerates all possible Hamiltonian paths! E.g.,

Φ = (p1 ∧ ∃© (p2 ∧ ∃© (p3 ∧ ∃© p4)))

∨ (p1 ∧ ∃© (p2 ∧ ∃© (p4 ∧ ∃© p3)))

∨ (p1 ∧ ∃© (p3 ∧ ∃© (p2 ∧ ∃© p4))) ∨ . . .

=⇒ Exponential formula: |Φ| = O(n · n!)
=⇒ No polynomial encoding can exist unless P = NP

because CTL model checking is in P.
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Other differences between LTL and CTL
Fairness

LTL

Unconditional, strong
and weak fairness can
be formalized in LTL.

Fairness can be
incorporated into
classical LTL model
checking: T |=fair φ
iff T |= (fair→ φ).

CTL

Most fairness constraints cannot be
encoded in CTL. E.g., strong
fairness �♦a→ �♦b is equivalent
to ♦�¬a ∨�♦b and persistence
(♦�¬a) is not expressible in CTL.

Need for ∀(fair→ φ) and
∃(fair ∧ φ) but not possible in CTL
(no connectives on path formulae).

=⇒ In CTL, fairness requires specific techniques.

=⇒ Adapt the semantics of ∃φ and ∀φ to interpret them on fair paths,
with fairness constraint seen as an LTL formula over CTL state formulae.

=⇒ Not discussed here. See the book for more.
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Other differences between LTL and CTL
Implementation relation

LTL

LTL is preserved by trace
inclusion (PSPACE-c.).

(Bi)simulation is a sound
but incomplete alternative,
computable in polynomial
time.

(bi)simulation
⇓ 6⇑

trace inclusion

CTL

Bisimulation preserves full
CTL.

Simulation preserves the
universal fragment of CTL.

↪→ Allows only quantifier ∀.

Equivalently, simulation
preserves the existential
fragment of CTL.

↪→ Allows only quantifier ∃
(recall ∀φ ≡ ¬∃¬φ).

=⇒ Different logics, different implementation relations.
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LTL vs. CTL
Wrap-up

Notion of time Linear Branching

Behavior in state s path-based: Traces(s) state-based:
computation tree of s

Temporal logic LTL: path formulae φ
s |= φ iff

∀π ∈ Paths(s), π |= φ

CTL: state formulae Φ
path quantifiers ∃φ, ∀φ

Model checking
complexity

PSPACE-complete P

Implementation
relation

trace inclusion and
equivalence

(PSPACE-complete)

(bi)simulation
(polynomial time)
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1 CTL: a specification language for BT properties

2 CTL model checking

3 CTL vs. LTL

4 CTL∗
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Why?

Because LTL and CTL are incomparable.

� CTL∗ extends CTL by allowing arbitrary nesting of path
quantifiers with temporal operators © and U .

� CTL∗ subsumes both CTL and LTL.

=⇒ Here, we only take a quick glance at CTL∗. For full
discussion, including model checking algorithms, see the

book.
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CTL∗ syntax
Core syntax

CTL∗ syntax

Given the set of atomic propositions AP, CTL∗ state formulae are
formed according to the following grammar:

Φ ::= true | a | Φ ∧Ψ | ¬Φ | ∃φ

where a ∈ AP and φ is a path formula. CTL∗ path formulae are
formed according to the following grammar:

φ ::= Φ | φ ∧ ψ | ¬φ | ©φ | φUψ

where Φ is a state formula and φ, ψ are path formulae.

As for LTL and CTL, we obtain derived propositional logics
operators ∨, →,. . . Moreover,

♦φ = true Uφ and �φ = ¬♦¬φ and ∀φ = ¬∃¬φ
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CTL∗ syntax
Examples (1/2)

CTL∗ syntax reminder

Φ ::= true | a | Φ∧Ψ | ¬Φ | ∃φ φ ::= Φ | φ∧ψ | ¬φ | ©φ | φUψ

Is Φ = ∃©a a valid CTL∗ formula? (yes for CTL)

� Yes, because φ =©a is a valid path formula, hence Φ = ∃φ is
a valid state formula.

Is Φ = a ∧ b a valid CTL∗ formula? (yes for CTL)

� Yes, because Ψ1 = a and Ψ2 = b are valid state formulae,
hence Φ = Ψ1 ∧Ψ2 is a valid state formula.

Is Φ = ∀(a ∧ ∃© b) a valid CTL∗ formula? (no for CTL)

� Yes, because Ψ = a ∧ ∃© b is a valid state formula and any
state formula Ψ can be taken as a path formula φ = Ψ.
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CTL∗ syntax
Examples (2/2)

CTL∗ syntax reminder

Φ ::= true | a | Φ∧Ψ | ¬Φ | ∃φ φ ::= Φ | φ∧ψ | ¬φ | ©φ | φUψ

Is Φ = ∃((∀© a) U (a ∧ b)) a valid CTL∗ formula? (yes for
CTL)

� Yes, because Ψ1 = ∀© a and Ψ2 = a ∧ b are valid state
formulae, hence φ = Ψ1 UΨ2 is a valid path formula, hence
Φ = ∃φ is a valid state formula.

Is Φ = ∃© (aU b) a valid CTL∗ formula? (no for CTL)

� Yes, because φ = aU b is a valid path formula and we can use
it directly after © without an additional quantifier in CTL∗.
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Semantics

The semantics of CTL∗ follows naturally from the one of CTL.
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Expressiveness

LTL CTL

CTL∗

Any CTL formula is also a CTL∗ formula.
� Indeed, the syntax of CTL is a subset of the one of CTL∗.

Any LTL formula φ has an equivalent CTL∗ formula.
� We have T |= φ ⇐⇒ T |= Φ = ∀φ.

=⇒ CTL∗ is strictly more expressive than LTL and CTL,
i.e., there exist CTL∗ formulae that cannot be expressed

neither in LTL nor in CTL.
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Expressiveness

LTL CTL

CTL∗

Examples of formulae belonging to the different sets

LTL formula φ = ♦�a cannot be expressed in CTL.

CTL formula Φ = ∀�∃♦a cannot be expressed in LTL.

LTL formula φ = �♦a is equivalent to CTL Φ = ∀�∀♦a.

CTL∗ formula Φ = ∀♦�a ∧ ∀�∃♦b is not expressible in LTL
nor in CTL.
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CTL∗ model checking

The algorithm for CTL∗ combines the respective algorithms
for LTL and CTL.

Its complexity is dominated by the complexity of LTL model
checking.

Complexity of the algorithm

The time complexity is O(|T |) · 2O(|Φ|).

Complexity of the model checking problem for CTL∗

The CTL∗ model checking problem is PSPACE-complete.

=⇒ Since LTL model checking is reducible to CTL∗ model
checking.

Chapter 4: Computation tree logic Mickael Randour 70 / 71



CTL CTL model checking CTL vs. LTL CTL∗

Implementation relations

Similarly to CTL,

bisimulation preserves full CTL∗;

simulation preserves the existential and universal
fragments of CTL∗.
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