Strategy Synthesis for Quantitative Objectives

Krishnendu Chatterjee¹ Mickael Randour² Jean-François Raskin³

¹ IST Austria

² UMONS

³ ULB

30.11.2011

EGs & MPGs	Multi-dim. & parity	Synthesis	Randomization	Conclusion
0000	0000000	000000000000000000000000000000000000000	00000000	00000

Aim of this work

- Study games with (multi-dimensional) quantitative objectives: energy and mean-payoff.
- Address questions that revolve around *strategies*:
 - ▷ bounds on memory,
 - ▷ synthesis algorithm,
 - \triangleright randomness $\stackrel{?}{\sim}$ memory.

EGs & MPGs	Multi-dim. & parity	Synthesis	Randomization	Conclusion
0000	0000000	00000000000000000000000000000000000	00000000	00000

Results Overview

Strategy synthesis

	MEGs	MMPGs		
	optimal	finite-memory optimal	optimal	
Memory	exp.	exp.	infinite [CDHR10]	
Synthesis	EXPTIME	EXPTIME	/	

Randomness as a substitute for finite-memory

	MEGs	EPGs	MMPGs	MPBGs	MPPGs
1-player	×	×			$\sqrt{(conj.)}$
2-player	×	×	×		$\sqrt{(conj.)}$

EGs & MPGs 0000	Multi-dim. & parity 0000000	Synthesis 00000000000000	Randomization	Conclusion 00000

1 Classical energy and mean-payoff games

- 2 Extensions to multi-dimensions and parity
- 3 Strategy synthesis
- 4 Randomization as a substitute to finite-memory
- 5 Conclusion and ongoing work

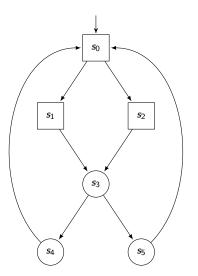
EGs & MPGs ●000	Multi-dim. & parity 0000000	Synthesis 00000000000000	Randomization 000000000	Conclusion 00000

1 Classical energy and mean-payoff games

- 2 Extensions to multi-dimensions and parity
- 3 Strategy synthesis
- 4 Randomization as a substitute to finite-memory
- 5 Conclusion and ongoing work

EGs & MPGs	Multi-dim. & parity	Synthesis	Randomization	Conclusion
000	000000	00000000000000	00000000	00000

Turn-based games



$$G = (S_1, S_2, s_{init}, E)$$

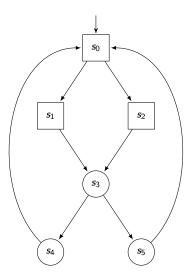
$$S = S_1 \cup S_2, S_1 \cap S_2 = \emptyset, E \subseteq S \times S$$

$$\mathcal{P}_1 \text{ states} = \bigcirc$$

$$\mathcal{P}_2 \text{ states} = \square$$

EGs & MPGs	Multi-dim. & parity	Synthesis	Randomization	Conclusion
○●○○	0000000	00000000000000000000000000000000000	00000000	00000

Turn-based games



$$G = (S_1, S_2, s_{init}, E)$$

$$S = S_1 \cup S_2, S_1 \cap S_2 = \emptyset, E \subseteq S \times S$$

$$\mathcal{P}_1 \text{ states} = \bigcirc$$

$$\mathcal{P}_2 \text{ states} = \square$$

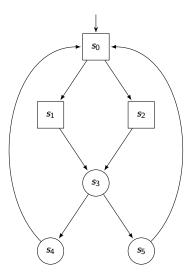
$$\text{Play } \pi = s^0 s^1 s^2 \dots s^n \dots \text{ s.t.}$$

$$s^0 = s_{init}$$

$$\text{Prefix } \rho = \pi(n) = s^0 s^1 s^2 \dots s^n$$

EGs & MPGs	Multi-dim. & parity	Synthesis	Randomization	Conclusion
0000	0000000	00000000000000	00000000	00000

Pure strategies



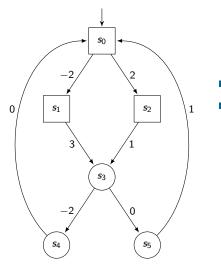
- Pure strategy for \mathcal{P}_i $\lambda_i \in \Lambda_i : \operatorname{Prefs}_i(G) \to S$ s.t. for all
 - $\rho \in \mathsf{Prefs}_i(G), \ (\mathsf{Last}(\rho), \lambda_i(\rho)) \in E$
- Memoryless strategy

$$\lambda_i^{pm} \in \Lambda_i^{PM} : S_i \to S$$

Finite-memory strategy $\lambda_i^{fm} \in \Lambda_i^{FM}$: Prefs_i(G) \rightarrow S, and can be encoded as a deterministic Moore machine

EGs & MPGs	Multi-dim. & parity	Synthesis	Randomization	Conclusion
0000	0000000	00000000000000	00000000	00000

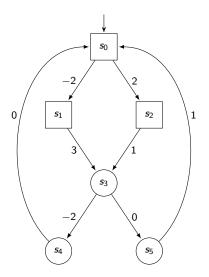
Integer payoff function



• $G = (S_1, S_2, s_{init}, E, \underline{w})$ • $w : E \to \mathbb{Z}$

EGs & MPGs	Multi-dim. & parity	Synthesis	Randomization	Conclu
0000	0000000	00000000000000	00000000	0000

Integer payoff function



 $\bullet G = (S_1, S_2, s_{init}, E, \underline{w})$

•
$$w: E \to \mathbb{Z}$$

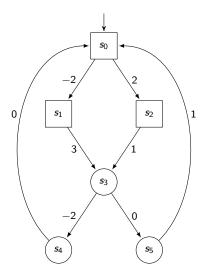
• Energy level

$$\mathsf{EL}(\rho) = \sum_{i=0}^{i=n-1} w(s_i, s_{i+1})$$

• Mean-payoff MP(π) = lim inf_{$n\to\infty$} $\frac{1}{n}$ EL($\pi(n)$)

EGs & MPGs	Multi-dim. & parity	Synthesis	Randomization	Conclusion
000	000000	000000000000000000000000000000000000000	00000000	00000

Energy and mean-payoff objectives



Energy objective

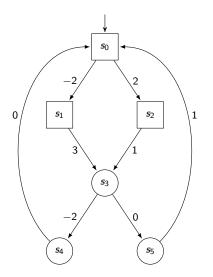
Given initial credit $v_0 \in \mathbb{N}$, PosEnergy_G(v_0) = { $\pi \in Plays(G) |$ $\forall n \ge 0 : v_0 + EL(\pi(n)) \in \mathbb{N}$ }

Mean-payoff objective

Given threshold $v \in \mathbb{Q}$, MeanPayoff_G(v) = { $\pi \in \text{Plays}(G) \mid \text{MP}(\pi) \ge v$ }

EGs & MPGs	Multi-dim. & parity	Synthesis	Randomization	Conclusion
0000	0000000	00000000000000	00000000	00000

Energy and mean-payoff objectives



λ₁(s₃) = s₄
 λ₁ wins for MeanPayoff_G(⁻¹/₄)
 λ₁ loses for PosEnergy_G(v₀), for any arbitrary high initial credit
 λ₁(s₃) = s₅
 λ₁ wins for MeanPayoff_G(¹/₂)
 λ₁ wins for PosEnergy_G(v₀) with

$$\lambda_1 \text{ wins for PosEnergy}_G(v_0), \text{ with } \\ v_0 = 2$$

Decision problems

- Unknown initial credit problem:
 ∃? v₀ ∈ N, λ₁ ∈ Λ₁ s.t. λ₁ wins for PosEnergy_G(v₀)
- Mean-payoff threshold problem:

Given $v \in \mathbb{Q}$, $\exists ? \lambda_1 \in \Lambda_1$ s.t. λ_1 wins for MeanPayoff_G(v)

MPG threshold v problem equivalent to EG-v unknown initial credit problem [BFL⁺08].

EGs & MPGs	Multi-dim. & parity	Synthesis	Randomization	Conclusion
0000	0000000	00000000000000	00000000	00000

Complexity of EGs and MPGs

	EGs	MPGs
Memory to win	memoryless	memoryless
	[CdAHS03, BFL ⁺ 08]	[EM79, LL69]
Decision problem	$NP \cap coNP$	$NP \cap coNP$

EGs	Multi-dim. & parity	Synthesis	Randomization	Conclusion
000	•••••••	0000000000000000	000000000	00000

1 Classical energy and mean-payoff games

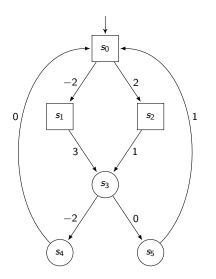
2 Extensions to multi-dimensions and parity

3 Strategy synthesis

- 4 Randomization as a substitute to finite-memory
- 5 Conclusion and ongoing work

EGs & MPGs 0000	Multi-dim. & parity	Synthesis 00000000000000000000000000000000000	Randomization 00000000	Conclusion

Multi-dimensional weights



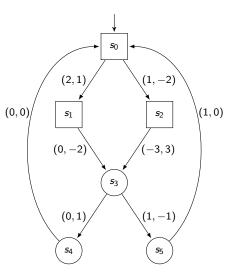
• $G = (S_1, S_2, s_{init}, E, w)$ • $w: E \to \mathbb{Z}$

Strat. Synth. for Quant. Obj.

Chatterjee, Randour, Raskin

EGs & MPGs	Multi-dim. & parity	Synthesis	Randomization	Conclusion
0000	00000	00000000000000	00000000	00000

Multi-dimensional weights



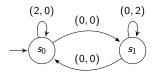
- $G = (S_1, S_2, s_{init}, E, \underline{k}, w)$ • $w : E \to \mathbb{Z}^k$
- multiple quantitative aspects
- natural extensions of energy and mean-payoff objectives and associated decision problems

EGs & MPGs 0000	Multi-dim. & parity ○O●OOOO	Synthesis 00000000000000000000000000000000000	Randomization 00000000	Conclusion 00000

■ Finite memory suffice for MEGs [CDHR10].

EGs & MPGs 0000	Multi-dim. & parity ○O●O○○○	Synthesis 00000000000000000000000000000000000	Randomization 00000000	Conclusion 00000

- Finite memory suffice for MEGs [CDHR10].
- However, infinite memory is needed for MMPGs, even with only one player! [CDHR10]



- ▷ To obtain MP(π) = (1, 1), \mathcal{P}_1 has to visit s_0 and s_1 for longer and longer intervals before jumping from one to the other.
- ▷ Any finite-memory strategy induces an ultimately periodic play s.t. $MP(\pi) = (x, y)$, x + y < 2.
- \triangleright With lim sup as MP the gap is huge : (2,2).

EGs & MPGs 0000	Multi-dim. & parity	Synthesis 00000000000000000000000000000000000	Randomization 00000000	Conclusion 00000

If players are restricted to finite memory [CDHR10],

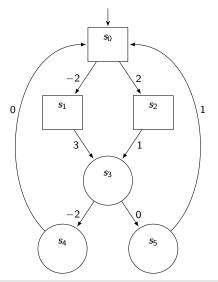
- MEGs and MMPGs are still determined and they are log-space equivalent,
- ▷ the unknown initial credit and the mean-payoff threshold problems are coNP-complete,
- \triangleright no clue on memory bounds for \mathcal{P}_1 (for \mathcal{P}_2 , we know it is memoryless).

EGs & MPGs 0000	Multi-dim. & parity	Synthesis 00000000000000000000000000000000000	Randomization 00000000	Conclusion 00000

If players are restricted to finite memory [CDHR10],

- MEGs and MMPGs are still determined and they are log-space equivalent,
- ▷ the unknown initial credit and the mean-payoff threshold problems are coNP-complete,
- \triangleright no clue on memory bounds for \mathcal{P}_1 (for \mathcal{P}_2 , we know it is memoryless).
- Other interesting results on decision problems on MEGs are proved in [FJLS11]. Surprisingly, given a fixed initial vector, the problem becomes EXPSPACE-hard.

EGs & MPGs 0000	Multi-dim. & parity	Synthesis 00000000000000	Randomization 000000000	Conclusion 00000

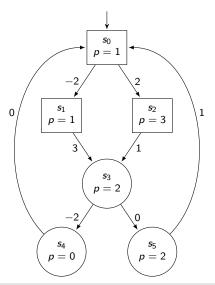


• $G = (S_1, S_2, s_{init}, E, w)$

Strat. Synth. for Quant. Obj.

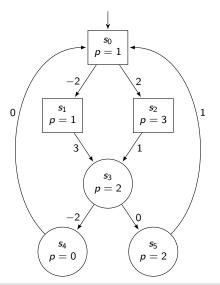
Chatterjee, Randour, Raskin

EGs & MPGs 0000	Multi-dim. & parity ○○○○●○○	Synthesis 00000000000000	Randomization 000000000	Conclusion 00000



- $G_p = (S_1, S_2, s_{init}, E, w, \underline{p})$ • $p: S \to \mathbb{N}$
- Par $(\pi) = \min \{ p(s) \mid s \in lnf(\pi) \}$
- $\begin{tabular}{ll} \begin{tabular}{ll} & \mathsf{Parity}_{\mathcal{G}_p} = \\ & \{\pi \in \mathsf{Plays}(\mathcal{G}_p) \mid \mathsf{Par}(\pi) \mbox{ mod } 2 = 0\} \end{tabular} \end{tabular} \end{tabular}$
- canonical way to express ω-regular objectives
- achieve the energy or mean-payoff objective while satisfying the parity condition

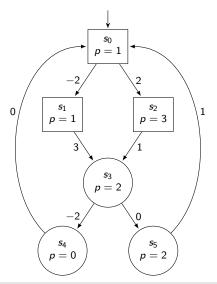
EGs & MPGs 0000	Multi-dim. & parity ○○○○●○○	Synthesis 000000000000000	Randomization 000000000	Conclusion 00000



- To win the energy parity objective, \mathcal{P}_1 must
 - ▷ visit s₄ infinitely often,
 - \triangleright alternate with visits of s_5 to fund future visits of s_4 .

Strat. Synth. for Quant. Obj.

EGs & MPGs	Multi-dim. & parity	Synthesis	Randomization	Conclusion
0000	○○○○●○○	00000000000000	00000000	00000



- To win the energy parity objective, \mathcal{P}_1 must
 - \triangleright visit s_4 infinitely often,
 - \triangleright alternate with visits of s_5 to fund future visits of s_4 .
- To achieve optimality for the mean-payoff parity objective, *P*₁ should wait longer and longer between visits of *s*₄.

Strat. Synth. for Quant. Obj.

EGs & MPGs	Multi-dim. & parity	Synthesis	Randomization	Conclusion
0000	○○○○○●○	00000000000000	00000000	00000
EPGs &	MPPGs			

■ Exponential memory suffice for EPGs and deciding the winner is in NP ∩ coNP [CD10].

EGs & MPGs	Multi-dim. & parity	Synthesis	Randomization	Conclusion
0000	○○○○○●○	00000000000000	00000000	00000

EPGs & MPPGs

- Exponential memory suffice for EPGs and deciding the winner is in NP ∩ coNP [CD10].
- Infinite memory is needed for MPPGs and deciding the winner is in NP ∩ coNP [CHJ05, BMOU11].

EGs & MPGs 0000	Multi-dim. & parity ○○○○●○	Synthesis 00000000000000000000000000000000000	Randomization 00000000	Conclusion 00000

EPGs & MPPGs

- Exponential memory suffice for EPGs and deciding the winner is in NP ∩ coNP [CD10].
- Infinite memory is needed for MPPGs and deciding the winner is in NP ∩ coNP [CHJ05, BMOU11].
- Finite-memory ε -strategies for MPPGs always exist [BCHJ09].
- \mathcal{P}_1 has a winning strategy for the MPPG $\langle G, p, w \rangle$ iff \mathcal{P}_1 has a winning strategy for the EPG $\langle G, p, w + \varepsilon \rangle$, with $\varepsilon = \frac{1}{|S|+1}$ [CD10].

EGs & MPGs	Multi-dim. & parity	Synthesis	Randomization	Conclusion
0000	000000	00000000000000	00000000	00000

Restriction to finite memory

Infinite memory:

▷ needed for MMPGs & MPPGs,

▷ practical implementation is unrealistic.

Restriction to finite memory

Infinite memory:

- ▷ needed for MMPGs & MPPGs,
- ▷ practical implementation is unrealistic.

Finite memory:

- ▷ preserves game determinacy,
- ▷ provides equivalence between energy and mean-payoff settings,
- $\,\triangleright\,$ the way to go for strategy synthesis.

Restriction to finite memory

Infinite memory:

- ▷ needed for MMPGs & MPPGs,
- ▷ practical implementation is unrealistic.

Finite memory:

- ▷ preserves game determinacy,
- > provides equivalence between energy and mean-payoff settings,
- $\,\triangleright\,$ the way to go for strategy synthesis.

Our goals:

- ▷ bounds on memory,
- ▷ strategy synthesis algorithm,
- \triangleright encoding of memory as randomness.

EGs & MPGs 0000	Multi-dim. & parity 0000000	Synthesis ●00000000000000000000000000000000000	Randomization 00000000	Conclusion 00000

1 Classical energy and mean-payoff games

2 Extensions to multi-dimensions and parity

3 Strategy synthesis

4 Randomization as a substitute to finite-memory

5 Conclusion and ongoing work

EGs & MPGs	Multi-dim. & parity	Synthesis	Randomization	Conclusion
0000	000000	000000000000000000000000000000000000000	00000000	00000

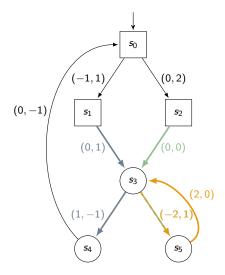
Obtained results

	MEGs	MMPGs	
	optimal	finite-memory optimal	optimal
Memory	exp.	exp.	infinite [CDHR10]
Synthesis	EXPTIME	EXPTIME	/

By [CDHR10], we only have to consider MEGs. Recall that the unknown initial credit decision problem is coNP-complete.

EGs & MPGs	Multi-dim. & parity	Synthesis	Randomization	Conclusion
0000	000000	000000000000000000000000000000000000000	00000000	00000

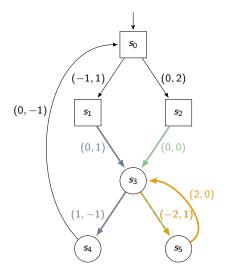
Upper memory bound: SCTs



• A winning strategy λ_1 for initial credit $v_0 = (2,0)$ is $\triangleright \lambda_1(*s_1s_3) = s_4,$ $\triangleright \lambda_1(*s_2s_3) = s_5,$ $\triangleright \lambda_1(*s_5s_3) = s_5.$

EGs & MPGs	Multi-dim. & parity	Synthesis	Randomization	Conclusion
0000	000000	000000000000000000000000000000000000000	00000000	00000

Upper memory bound: SCTs

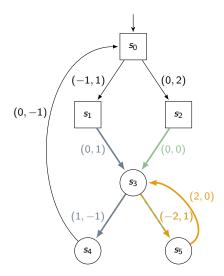


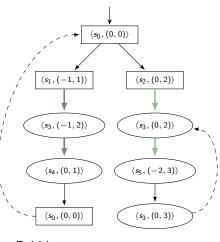
• A winning strategy λ_1 for initial credit $v_0 = (2,0)$ is $\triangleright \lambda_1(*s_1s_3) = s_4,$ $\triangleright \lambda_1(*s_2s_3) = s_5,$ $\triangleright \lambda_1(*s_5s_3) = s_5.$

- Lemma: To win, P₁ must be able to enforce positive cycles.
 - Self-covering paths on VASS [Rac78, RY86].
 - Self-covering trees (SCTs) on reachability games over VASS [BJK10].

EGs & MPGs	Multi-dim. & parity	Synthesis	Randomization	Conclusion
0000	0000000	000000000000000000000000000000000000000	00000000	00000

Upper memory bound: SCTs

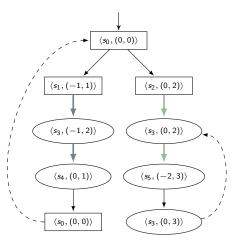




Pebble moves \Rightarrow strategy.

Upper memory bound: SCTs

- $T = (Q, R) \text{ is a SCT for } s_0, \\ \Theta : Q \mapsto S \times \mathbb{Z}^k \text{ is a labeling function.}$
- Root labeled $\langle s_0, (0, \ldots, 0) \rangle$.
- Non-leaf nodes have
 - \triangleright unique child if \mathcal{P}_1 ,
 - \triangleright all possible children if \mathcal{P}_2 .
- Leafs have energy ancestors: ancestors with lower label.



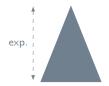
Pebble moves \Rightarrow strategy.

Upper memory bound: SCTs for VASS games

Theorem (application of [BJK10]): On a VASS game with weights in $\{-1, 0, 1\}^k$, if state *s* is winning for \mathcal{P}_1 , there is a SCT for *s* whose <u>depth</u> is at most $I = 2^{(d-1) \cdot |S|} \cdot (|S|+1)^{c \cdot k^2}$, with *c* a constant independent of the considered VASS game and *d* its branching degree.

 \rightsquigarrow If there exists a winning strategy, there exists a "compact" one.

EGs & MPGs 0000	Multi-dim. & parity 0000000	Synthesis	Randomization 000000000	Conclusion 00000



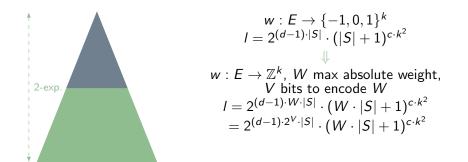
$$w: E \to \{-1, 0, 1\}^k$$

 $I = 2^{(d-1) \cdot |S|} \cdot (|S|+1)^{c \cdot k^2}$

Depth bound from [BJK10].

Strat. Synth. for Quant. Obj.

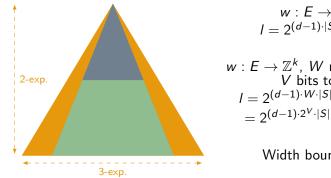
EGs & MF 0000	Gs Multi-dim. & 0000000	parity Synthesis	Randomization	Conclusion 00000



Naive approach: blow-up by W in the size of the state space.

Strat. Synth. for Quant. Obj.

EGs & MPGs	Multi-dim. & parity	Synthesis	Randomization	Conclusion
0000	0000000		000000000	00000



$$w: E \to \{-1, 0, 1\}^{k}$$

$$I = 2^{(d-1) \cdot |S|} \cdot (|S|+1)^{c \cdot k^{2}}$$

$$\Downarrow$$

$$: E \to \mathbb{Z}^{k}, W \text{ max absolute weight,}$$

$$V \text{ bits to encode } W$$

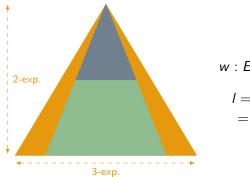
$$I = 2^{(d-1) \cdot W \cdot |S|} \cdot (W \cdot |S|+1)^{c \cdot k^{2}}$$

$$= 2^{(d-1) \cdot 2^{V} \cdot |S|} \cdot (W \cdot |S|+1)^{c \cdot k^{2}}$$

$$\Downarrow$$
Width bounded by $L = d^{l}$

Naive approach: width increases exponentially with depth.

EGs & MPGs	Multi-dim. & parity	Synthesis	Randomization	Conclusion
0000	0000000		000000000	00000



$$w: E \to \{-1, 0, 1\}^{k}$$

$$I = 2^{(d-1) \cdot |S|} \cdot (|S|+1)^{c \cdot k^{2}}$$

$$\Downarrow$$

$$E \to \mathbb{Z}^{k}, W \text{ max absolute weight,}$$

$$V \text{ bits to encode } W$$

$$= 2^{(d-1) \cdot W \cdot |S|} \cdot (W \cdot |S|+1)^{c \cdot k^{2}}$$

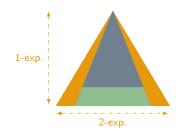
$$= 2^{(d-1) \cdot 2^{V} \cdot |S|} \cdot (W \cdot |S|+1)^{c \cdot k^{2}}$$

$$\Downarrow$$
Width bounded by $L = d^{l}$

Naive approach: overall, 3-exp. memory $\leq L \cdot I$.

Strat. Synth. for Quant. Obj.

EGs & MPGs 0000	Multi-dim. & parity 0000000	Synthesis	Randomization 00000000	Conclusion 00000



$$w: E \to \{-1, 0, 1\}^{k}$$

$$I = 2^{(d-1) \cdot |S|} \cdot (|S|+1)^{c \cdot k^{2}}$$

$$\Downarrow$$

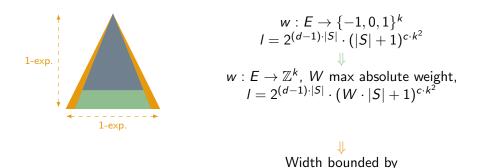
$$w: E \to \mathbb{Z}^{k}, W \text{ max absolute weight,}$$

$$I = 2^{(d-1) \cdot |S|} \cdot (W \cdot |S|+1)^{c \cdot k^{2}}$$

Width bounded by $L = d^{I}$

Refined approach: no blow-up in exponent as branching is preserved.

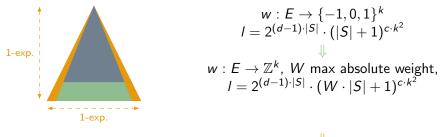
EGs & MPGs 0000	Multi-dim. & parity 0000000	Synthesis	Randomization 00000000	Conclusion 00000



Refined approach: merge equivalent nodes, width is bounded by number of incomparable labels (see next slide).

 $L = \begin{pmatrix} 2 \cdot l \cdot W + k - 1 \\ k - 1 \end{pmatrix}$

EGs & MPGs 0000	Multi-dim. & parity 0000000	Synthesis	Randomization 00000000	Conclusion 00000

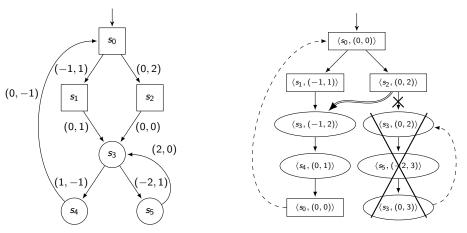


Width bounded by $L = \begin{pmatrix} 2 \cdot I \cdot W + k - 1 \\ k - 1 \end{pmatrix}$

Refined approach: overall, single exp. memory $\leq L \cdot I$.

Upper memory bound: merging nodes in SCTs

- Key idea to reduce width to single exp.
 - $\triangleright \mathcal{P}_1$ only cares about the energy level.
 - ▷ If he can win with energy v, he can win with energy $\geq v$.



Strat. Synth. for Quant. Obj.

Chatterjee, Randour, Raskin

Upper memory bound

Theorem: The size of memory needed for a finite-memory winning strategy in an energy game $G = (S_1, S_2, s_{init}, E, k, w)$ is upper bounded by an exponential

$$memSize(|S|, k, d, W) = I \cdot |S| \cdot {2 \cdot I \cdot W + k - 1 \choose k - 1},$$

with $I = 2^{(d-1) \cdot |S|} \cdot (W \cdot |S| + 1)^{c \cdot k^2}$, d the branching degree of the game, W the largest weight on any edge and c a constant independent of the game.

Note that given *I*, it is easy to see that the needed initial credit is bounded by $I \cdot W$.

Strat. Synth. for Quant. Obj.

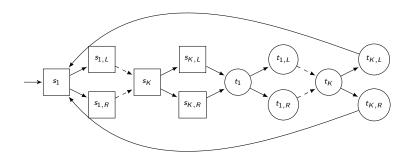
EGs & MPGs	Multi-dim. & parity	Synthesis	Randomization	Conclusion
0000	0000000	00000000000000	00000000	00000

Lower memory bound

Theorem: There exists a family of games $(G(K))_{K\geq 1} = (S_1, S_2, s_{init}, E, k = 2 \cdot K, w)$ such that for any initial credit, \mathcal{P}_1 needs exponential memory to win.

EGs & MPGs 0000	Multi-dim. & parity 0000000	Synthesis	Randomization 00000000	Conclusion 00000

Lower memory bound



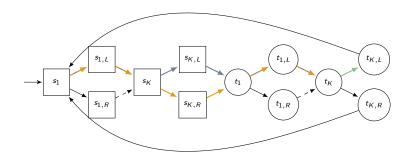
$$\forall 1 \le i \le K, w((\circ, s_i)) = w((\circ, t_i)) = (0, \dots, 0), \\ w((s_i, s_{i,L})) = -w((s_i, s_{i,R})) = w((t_i, t_{i,L})) = -w((t_i, t_{i,R})), \\ \forall 1 \le j \le k, w((s_i, s_{i,L}))(j) = \begin{cases} = 1 \text{ if } j = 2 \cdot i - 1 \\ = -1 \text{ if } j = 2 \cdot i \\ = 0 \text{ otherwise} \end{cases}$$

Strat. Synth. for Quant. Obj.

Chatterjee, Randour, Raskin

EGs & MPGs 0000	Multi-dim. & parity 0000000	Synthesis	Randomization 000000000	Conclusion 00000

Lower memory bound



If \mathcal{P}_1 plays according to a Moore machine with less than $2^{\mathcal{K}}$ states, he takes the same decision in some state t_x for the two highlighted prefixes (let $x = \mathcal{K}$ w.n.l.o.g.).

 $\Rightarrow \mathcal{P}_2 \text{ can alternate and enforce decrease by 1 every two visits} \Rightarrow \mathcal{P}_1 \text{ loses for any } v_0 \in \mathbb{N}^k.$

EGs & MPGs	Multi-dim. & parity	Synthesis	Randomization	Conclusion
0000	0000000	000000000000000000000000000000000000000	00000000	00000

Theorem: Let $G = (S_1, S_2, s_{init}, E, k, w)$ be a multi energy game. If Player 1 has a winning strategy in G, a Moore machine whose size is at most exponential in G can be constructed in time bounded by an exponential in G.

EGs & MPGs	Multi-dim. & parity	Synthesis	Randomization	Conclusion
0000	0000000	000000000000000000000000000000000000000	00000000	00000

Theorem: Let $G = (S_1, S_2, s_{init}, E, k, w)$ be a multi energy game. If Player 1 has a winning strategy in G, a Moore machine whose size is at most exponential in G can be constructed in time bounded by an exponential in G.

Idea: greatest fixed point of a $\mathsf{Cpre}_\mathbb{C}$ operator.

- \triangleright Exponential bound on the size of manipulated sets (\sim width).
- Exponential bound on the number of iterations if a winning strategy exists (~ depth).

EGs & MPGs	Multi-dim. & parity	Synthesis	Randomization	Conclusion
0000	000000	000000000000000000000000000000000000000	00000000	00000

•
$$\mathbb{C} = I \cdot W \in \mathbb{N}, \ U(\mathbb{C}) = (S_1 \cup S_2) \times [0..\mathbb{C}]^k,$$

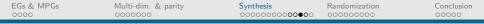
•
$$\mathcal{U}(\mathbb{C}) = 2^{U(\mathbb{C})}$$
, the powerset of $U(\mathbb{C})$,

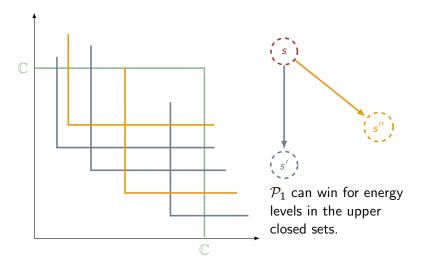
• $\mathsf{Cpre}_{\mathbb{C}} : \mathcal{U}(\mathbb{C}) \to \mathcal{U}(\mathbb{C}), \ \mathsf{Cpre}_{\mathbb{C}}(V) =$

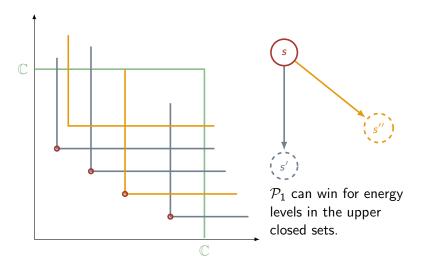
$$\begin{array}{l} \{(s_1, e_1) \in U(\mathbb{C}) \mid s_1 \in S_1 \land \exists (s_1, s) \in E, \exists (s, e_2) \in V : e_2 \leq e_1 + w(s_1, s) \} \\ \cup \\ \{(s_2, e_2) \in U(\mathbb{C}) \mid s_2 \in S_2 \land \forall (s_2, s) \in E, \exists (s, e_1) \in V : e_1 \leq e_2 + w(s_2, s) \} \end{array}$$

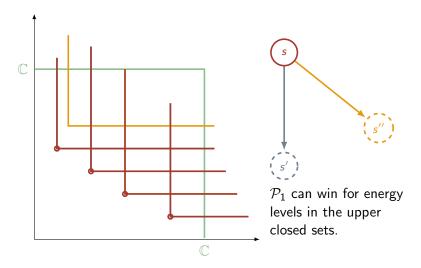
Intuitively, compute for each state the sets of winning initial credits, represented by minimal elements of upper closed sets.

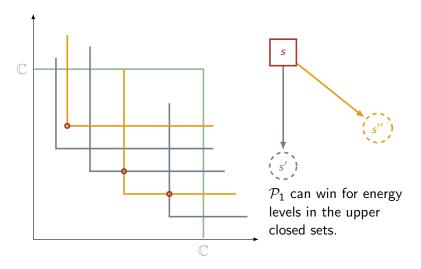
Strat. Synth. for Quant. Obj.

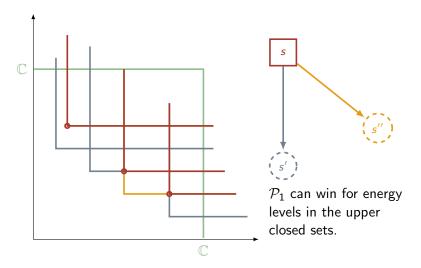












EGs & MPGs	Multi-dim. & parity	Synthesis	Randomization	Conclusion
0000	0000000	000000000000000000000000000000000000000	00000000	00000

Lemma: Let $G = (S_1, S_2, s_{init}, E, k, w)$ be a multi energy game, in which all absolute values of weights are bounded by W, if Player 1 has a winning strategy in G and T = (Q, R) is a self-covering tree for G of depth I, then $(s_{init}, \mathbb{C}) \in \operatorname{Cpre}^*_{\mathbb{C}}$ for $\mathbb{C} = W \cdot I$.

Lemma: Let $G = (S_1, S_2, s_{init}, E, k, w)$ be a multi energy game, let $\mathbb{C} \in \mathbb{N}$, if there exists $c \in \mathbb{N}$ such that $(s_{init}, c) \in \operatorname{Cpre}^*_{\mathbb{C}}$ then Player 1 has a winning strategy in G for initial credit c and a memory used by Player 1 can be bounded by $|\operatorname{Min}_{\preceq}(\operatorname{Cpre}_{\mathbb{C}})|$.

EGs & MPGs	Multi-dim. & parity	Synthesis	Randomization	Conclusion
0000	0000000	000000000000000000000000000000000000000	00000000	00000

Lemma: Let $G = (S_1, S_2, s_{init}, E, k, w)$ be a multi energy game, in which all absolute values of weights are bounded by W, if Player 1 has a winning strategy in G and T = (Q, R) is a self-covering tree for G of depth I, then $(s_{init}, \mathbb{C}) \in \operatorname{Cpre}^*_{\mathbb{C}}$ for $\mathbb{C} = W \cdot I$.

Lemma: Let $G = (S_1, S_2, s_{init}, E, k, w)$ be a multi energy game, let $\mathbb{C} \in \mathbb{N}$, if there exists $c \in \mathbb{N}$ such that $(s_{init}, c) \in \operatorname{Cpre}^*_{\mathbb{C}}$ then Player 1 has a winning strategy in G for initial credit c and a memory used by Player 1 can be bounded by $|\operatorname{Min}_{\preceq}(\operatorname{Cpre}_{\mathbb{C}})|$.

- \blacksquare Incremental approach can be used, by increasing the value of $\mathbb C$ inch by inch.
- Efficient implementation seems within reach.

Corollary for MMPGs and summary

Corollary (thanks to [CDHR10]): *Exponential memory is both* sufficient and, in general, necessary for finite-memory winning on MMPGs. Finite-memory strategy synthesis is in EXPTIME.

	MEGs	MMPGs	
	optimal	finite-memory optimal	optimal
Memory	exp.	exp.	infinite [CDHR10]
Synthesis	EXPTIME	EXPTIME	/

EGs & MPGs	Multi-dim. & parity	Synthesis	Randomization	Conclusion
0000	0000000	00000000000000000000000000000000000	•••••••	00000

1 Classical energy and mean-payoff games

2 Extensions to multi-dimensions and parity

3 Strategy synthesis

4 Randomization as a substitute to finite-memory

5 Conclusion and ongoing work

EGs & MPGs	Multi-dim. & parity	Synthesis	Randomization	Conclusion
0000	0000000	00000000000000000000000000000000000	00000000	00000

Obtained results

Question: when and how can \mathcal{P}_1 trade his pure finite-memory strategy for an equally powerful randomized memoryless one ?

	MEGs	EPGs	MMPGs	MPBGs	MPPGs
1-player	×	×			$\sqrt{(\text{conj.})}$
2-player	×	×	×	\checkmark	√ (conj.)

EGs & MPGs	Multi-dim. & parity	Synthesis	Randomization	Conclusion
0000	0000000	00000000000000000000000000000000000	00000000	00000

Obtained results

Question: when and how can \mathcal{P}_1 trade his pure finite-memory strategy for an equally powerful randomized memoryless one ?

	MEGs	EPGs	MMPGs	MPBGs	MPPGs
1-player	×	×		\checkmark	$\sqrt{(\text{conj.})}$
2-player	×	×	×	\checkmark	$\sqrt{(\text{conj.})}$

 \Rightarrow Mean-payoff Büchi games.

EGs & MPGs 0000	Multi-dim. & parity 0000000	-)	Randomization 00000000	Conclusion 00000

Probabilistic semantics

■ Büchi: sure ~→ almost-sure.

Probabilistic semantics

■ **Büchi**: sure ~→ almost-sure.

Mean-payoff:

 $\triangleright \quad \alpha$ -satisfaction. Given $\alpha \in [0, 1]$, $\forall \lambda_2 \in \Lambda_2$, $\mathbb{P}^{\lambda_1, \lambda_2}_{\text{Sinit}}(\mathsf{MP}_{\geq v}) \geq \alpha$.

 $\triangleright \ \beta$ -expectation. Given $\beta \in \mathbb{Q}^k$, $\forall \lambda_2 \in \Lambda_2$, $\mathbb{E}_{s_{init}}^{\lambda_1,\lambda_2}(\mathsf{MP}) \geq \beta$.

▷ 1-satisfaction of $MP_{\geq v} \Rightarrow v$ -expectation for MP.

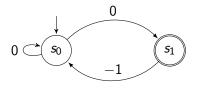
Probabilistic semantics

- **Büchi**: sure ~→ almost-sure.
- Mean-payoff:
 - $\triangleright \quad \alpha$ -satisfaction. Given $\alpha \in [0, 1], \forall \lambda_2 \in \Lambda_2, \mathbb{P}^{\lambda_1, \lambda_2}_{s_{init}}(\mathsf{MP}_{\geq v}) \geq \alpha$.
 - $\triangleright \ \beta\text{-expectation. Given } \beta \in \mathbb{Q}^k, \forall \lambda_2 \in \Lambda_2, \mathbb{E}_{s_{\text{init}}}^{\lambda_1,\lambda_2}(\mathsf{MP}) \geq \beta.$
 - ▷ 1-satisfaction of $MP_{\geq v} \Rightarrow v$ -expectation for MP.
- \Rightarrow Almost-sure semantics.

EGs & MPGs 0000	Multi-dim. & parity 0000000	Synthesis 00000000000000	Randomization	Conclusion 00000

Mean-payoff Büchi games

Remark. MPBGs require infinite memory for optimality.

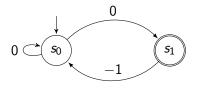


 $\triangleright \mathcal{P}_1$ has to delay his visits of s_1 for longer and longer intervals.

EGs & MPGs 0000	Multi-dim. & parity 0000000	Synthesis 00000000000000000000000000000000000	Randomization	Conclusion 00000

Mean-payoff Büchi games

Remark. MPBGs require infinite memory for optimality.



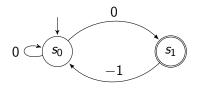
 $\triangleright \mathcal{P}_1$ has to delay his visits of s_1 for longer and longer intervals.

Theorem: In MPBGs, ε -optimality can be achieved using randomized memoryless strategies, both for satisfaction and expectation semantics.

Strat. Synth. for Quant. Obj.

EGs & MPGs	Multi-dim. & parity	Synthesis	Randomization	Conclusion
0000	0000000	00000000000000		00000

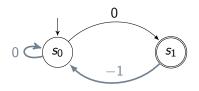
MPBGs: sketch of proof



Let $G = (S_1, S_2, s_{init}, E, w, F)$, with F the set of Büchi states. Let n = |S|. Let Win be the set of winning states for the MPB objective with threshold 0 (w.n.l.o.g.). For all $s \in Win$, \mathcal{P}_1 has two uniform memoryless strategies λ_1^{gfe} and $\lambda_1^{\Diamond F}$ s.t.

EGs & MPGs	Multi-dim. & parity	Synthesis	Randomization	Conclusion
0000	0000000	00000000000000		00000

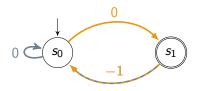
MPBGs: sketch of proof



- 1 Let $G = (S_1, S_2, s_{init}, E, w, F)$, with F the set of Büchi states. Let n = |S|. Let Win be the set of winning states for the MPB objective with threshold 0 (w.n.l.o.g.). For all $s \in Win$, \mathcal{P}_1 has two uniform memoryless strategies λ_1^{gfe} and $\lambda_1^{\Diamond F}$ s.t.
 - λ_1^{gfe} ensures that any cycle of its outcome have MP \geq 0 [CD10],

EGs & MPGs	Multi-dim. & parity	Synthesis	Randomization	Conclusion
0000	0000000	00000000000000		00000

MPBGs: sketch of proof



- 1 Let $G = (S_1, S_2, s_{init}, E, w, F)$, with F the set of Büchi states. Let n = |S|. Let Win be the set of winning states for the MPB objective with threshold 0 (w.n.l.o.g.). For all $s \in Win$, \mathcal{P}_1 has two uniform memoryless strategies λ_1^{gfe} and $\lambda_1^{\Diamond F}$ s.t.
 - λ_1^{gfe} ensures that any cycle of its outcome have MP ≥ 0 [CD10],
 - $\lambda_1^{\diamond F}$ ensures reaching F in at most n steps, while staying in Win.

EGs & MPGs	Multi-dim. & parity	Synthesis	Randomization	Conclusion
0000	0000000	00000000000000		00000

This ensures that

- \triangleright *F* is visited infinitely often,
- ▷ the total cost of phases (a) + (b) is bounded by $-2 \cdot W \cdot n$, and thus the mean-payoff is at least $-\varepsilon$.

- 3 Based on λ_1^{pf} , we build a randomized memoryless strategy λ_1^{rm} s.t. in each state,
 - (a) it plays as λ₁^{gfe} with probability at least 1 ε/(2 ⋅ W ⋅ n),
 (b) it plays as λ₁^{◊F} with the remaining probability.

- 3 Based on λ_1^{pf} , we build a randomized memoryless strategy λ_1^{rm} s.t. in each state,
 - (a) it plays as λ_1^{gfe} with probability at least $1 \frac{\varepsilon}{2 \cdot W \cdot n}$,

(b) it plays as $\lambda_1^{\diamond F}$ with the remaining probability.

Büchi

- ▷ Probability of playing as $\lambda_1^{\diamond F}$ for *n* steps in a row and ensuring visit of *F* strictly positive at all times.
- \triangleright Thus λ_1^{rm} almost-sure winning for the Büchi objective.

Mean-payoff

- Long-term frequencies of transitions within a given state maintained.
- $\triangleright \mathcal{P}_2$ may use the same strategy on the graph induced by λ_1^{pf} and the MDP induced by λ_1^{rm} to achieve the same overall transition probabilities.
- \triangleright Achieving plays π with MP(π) < $-\varepsilon$ with strictly positive probability on the MDP would induce that \mathcal{P}_2 can enforce such a play on the graph and lead to contradiction.
- ▷ Thus λ_1^{rm} almost-sure winning for the MP objective with threshold $-\varepsilon$.

EGs & MPGs	Multi-dim. & parity	Synthesis	Randomization	Conclusion
0000	0000000	00000000000000	00000000	00000

Summary

	MEGs	EPGs	MMPGs	MPBGs	MPPGs
1-player	×	×		\checkmark	√ (conj.)
2-player	×	×	×	\checkmark	√ (conj.)

EGs & MPGs 0000	Multi-dim. & parity 0000000	Synthesis 00000000000000	Randomization 000000000	Conclusion •0000

1 Classical energy and mean-payoff games

- 2 Extensions to multi-dimensions and parity
- 3 Strategy synthesis
- 4 Randomization as a substitute to finite-memory
- 5 Conclusion and ongoing work

EGs & MPGs 0000	Multi-dim. & parity 0000000	Synthesis 00000000000000	Randomization 00000000	Conclusion 00000

Conclusion

- Quantitative objectives
- Restriction to finite-memory (practical interest)
- Exponential memory bounds
- EXPTIME synthesis
- Randomness instead of memory

EGs & MPGs	Multi-dim. & parity	Synthesis	Randomization	Conclusion
0000	0000000	00000000000000	00000000	

Results Overview

Strategy synthesis

	MEGs	MMPGs		
	optimal	finite-memory optimal	optimal	
Memory	exp.	exp.	infinite [CDHR10]	
Synthesis	EXPTIME	EXPTIME	/	

Randomness as a substitute for finite-memory

	MEGs	EPGs	MMPGs	MPBGs	MPPGs
1-player	×	×			$\sqrt{(conj.)}$
2-player	×	×	×		$\sqrt{(conj.)}$

EGs & MPGs	Multi-dim. & parity	Synthesis	Randomization	Conclusion
0000	0000000	00000000000000000000000000000000000	00000000	000●0

Ongoing and future work

- Extend results on MEGs/MMPGs to MEPGs/MMPPGs.
- Consider alternative, more natural definition of MP-like objective, with good synthesis properties.

EGs & MPGs	Multi-dim. & parity	Synthesis	Randomization	Conclusion
0000	0000000	00000000000000000	000000000	0000●

Thanks. Questions ?

EGs & MPGs 0000	Multi-dim. & parity 0000000	Synthesis 00000000000000	Randomization 000000000	Conclusion

 Roderick Bloem, Krishnendu Chatterjee, Thomas A. Henzinger, and Barbara Jobstmann.
 Better quality in synthesis through quantitative objectives. In *Proc. of CAV*, volume 5643 of *LNCS*, pages 140–156. Springer, 2009.

 Patricia Bouyer, Ulrich Fahrenberg, Kim Guldstrand Larsen, Nicolas Markey, and Jirí Srba.
 Infinite runs in weighted timed automata with energy constraints.
 In Proc. of EORMATS, volume 5215 of LNCS, pages 33–47.

In *Proc. of FORMATS*, volume 5215 of *LNCS*, pages 33–47. Springer, 2008.

Tomás Brázdil, Petr Jancar, and Antonín Kucera. Reachability games on extended vector addition systems with states.

In *Proc. of ICALP*, volume 6199 of *LNCS*, pages 478–489. Springer, 2010.

Strat. Synth. for Quant. Obj.

Patricia Bouyer, Nicolas Markey, Jörg Olschewski, and Michael Ummels.

Measuring permissiveness in parity games: Mean-payoff parity games revisited.

In *Proc. of ATVA*, volume 6996 of *LNCS*, pages 135–149. Springer, 2011.

Krishnendu Chatterjee and Laurent Doyen.
 Energy parity games.
 In *Proc. of ICALP*, volume 6199 of *LNCS*, pages 599–610.
 Springer, 2010.

Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, and Mariëlle Stoelinga.

Resource interfaces.

In *Proc. of EMSOFT*, volume 2855 of *LNCS*, pages 117–133. Springer, 2003.

- Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, and Jean-François Raskin.
 Generalized mean-payoff and energy games.
 In *Proc. of FSTTCS*, volume 8 of *LIPIcs*, pages 505–516.
 Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.
- Krishnendu Chatterjee, Thomas A. Henzinger, and Marcin Jurdzinski.

Mean-payoff parity games.

In *Proc. of LICS*, pages 178–187. IEEE Computer Society, 2005.

- A. Ehrenfeucht and J. Mycielski.
 Positional strategies for mean payoff games.
 International Journal of Game Theory, 8(2):109–113, 1979.
- Uli Fahrenberg, Line Juhl, Kim G. Larsen, and Jirí Srba. Energy games in multiweighted automata.

EGs & MPGs 0000	Multi-dim. & parity 0000000	Synthesis 00000000000000	Randomization 00000000	Conclusion 00000
	In <i>Proc. of ICTAC</i> , volume Springer, 2011.	6916 of <i>LNCS</i> ,	pages 95–115.	
	T.M. Liggett and S.A. Lipp Short notes: Stochastic gan time average payoff. <i>Siam Review</i> , 11(4):604–60	nes with perfec	t information and	
	Charles Rackoff. The covering and boundedn systems. <i>Theor. Comput. Sci.</i> , 6:223-	·	or vector addition	
	Louis E. Rosier and Hsu-Ch A multiparameter analysis o vector addition systems. J. Comput. Syst. Sci., 32(1)	f the boundedr	·	