Looking at Mean-Payoff and Total-Payoff through Windows

K. Chatterjee (IST Austria) L. Doyen (ENS Cachan) M. Randour (UMONS-ULB) J.-F. Raskin (ULB)

$$
20.09 .2013
$$

Highlights of Logic, Games and Automata
UMONS
Université de Mons

Aim of this talk

1 New family of quantitative objectives, based on MP and TP
2 Convince you of its advantages and usefulness
3 No technical stuff but feel free to check the conference version (ATVA'13) or the arXiv full version!

Looking at Mean-Payoff and Total-Payoff through Windows
Krishnendu Chatterjec ${ }^{1+*}$, Laurent Doyen ${ }^{2}$, Mickael Randour ${ }^{3,+}$, and Jean-Françis Raskin ${ }^{4, \%}$

Classical MP and TP games

$$
\begin{aligned}
& \text { - IP }(\pi)=\liminf _{n \rightarrow \infty} \sum_{i=0}^{i=n-1} w\left(s_{i}, s_{i+1}\right) \\
& \text { - } \underline{\mathrm{MP}}(\pi)=\liminf _{n \rightarrow \infty} \frac{1}{n} \mathrm{TP}(\pi(n))
\end{aligned}
$$

Classical MP and TP games

Classical MP and TP games

■ $\underline{\mathrm{TP}}(\pi)=\liminf _{n \rightarrow \infty} \sum_{i=0}^{i=n-1} w\left(s_{i}, s_{i+1}\right)$
$\square \underline{\mathrm{MP}}(\pi)=\liminf _{n \rightarrow \infty} \frac{1}{n} \mathrm{TP}(\pi(n))$

Classical MP and TP games

Then, $(2,5,2)^{\omega}$

- TP $(\pi)=\liminf _{n \rightarrow \infty} \sum_{i=0}^{i=n-1} w\left(s_{i}, s_{i+1}\right)$
- $\underline{\mathrm{MP}}(\pi)=\liminf _{n \rightarrow \infty} \frac{1}{n} \mathrm{TP}(\pi(n))$

What do we know?

				k-dimension			
	complexity	\mathcal{P}_{1} mem.	\mathcal{P}_{2} mem.	complexity	\mathcal{P}_{1} mem.	\mathcal{P}_{2} mem.	
$\underline{M P} / \overline{M P}$	$N P \cap \operatorname{coNP}$	mem-less	coNP-c. $/ N P \cap \operatorname{coNP}$	infinite	mem-less		
$\mathrm{TP} / \overline{T P}$	$N P \cap \operatorname{coNP}$	mem-less	$? ?$	$? ?$	$? ?$		

\triangleright Long tradition of study. Non-exhaustive selection: [EM79, ZP96, Jur98, GZ04, GS09, CDHR10, VR11, CRR12]

What about multi total-payoff?

				k-dimension			
	complexity	\mathcal{P}_{1} mem.	\mathcal{P}_{2} mem.	complexity	\mathcal{P}_{1} mem.	\mathcal{P}_{2} mem.	
$\underline{M P} / \overline{M P}$	$N P \cap$ coNP	mem-less	coNP-c. $/ N P \cap \operatorname{coNP}$	infinite	mem-less		
$T P / \overline{T P}$	$N P \cap \operatorname{coNP}$	mem-less	$? ?$	$? ?$	$? ?$		

\triangleright TP and MP look very similar in one-dimension

- TP \sim refinement of MP $=0$
\triangleright Is it still true in multi-dimension?

What about multi total-payoff?

				k-dimension			
	complexity	\mathcal{P}_{1} mem.	\mathcal{P}_{2} mem.	complexity	\mathcal{P}_{1} mem.		
$\underline{M P} / \overline{\mathrm{MP}}$	$\mathrm{NP} \cap \operatorname{coNP}$	mem-less	coNP-c. $/ \mathrm{NP} \cap \operatorname{coNP}$	infinite	mem-less		
$\mathrm{TP} / \overline{T P}$	$\mathrm{NP} \cap \operatorname{coNP}$	mem-less	Undec.	-	-		

\triangleright Unfortunately, no!
It would be nice to have...
a decidable objective with the same flavor (some sort of approx.)

Is the complexity barrier breakable?

				k-dimension		
	complexity	\mathcal{P}_{1} mem.	\mathcal{P}_{2} mem.	complexity	\mathcal{P}_{1} mem.	\mathcal{P}_{2} mem.
$\underline{M P} / \overline{\mathrm{MP}}$	$\mathrm{NP} \cap$ coNP	mem-less	coNP-c. $/ \mathrm{NP} \cap$ coNP	infinite	mem-less	
$\underline{\mathrm{TP}} / \overline{\mathrm{TP}}$	$\mathrm{NP} \cap$ coNP	mem-less	Undec.	-	-	

$\triangleright \mathrm{P}$ membership for the one-dim. case is a long-standing open problem!

> It would be nice to have. . . an approximation decidable in polynomial time

Do we really want to play eternally?

				k-dimension		
	one-dimension	complexity	\mathcal{P}_{1} mem.	\mathcal{P}_{2} mem.		
$\underline{M P} / \overline{\mathrm{MP}}$	$\mathrm{NP} \cap$ coNP	mem-less	coNP-c. $/ \mathrm{NP} \cap \operatorname{coNP}$	infinite	mem-less	
$\mathrm{TP} / \overline{\mathrm{TP}}$	$\mathrm{NP} \cap \operatorname{coNP}$	mem-less	Undec.	-	-	

\triangleright MP and TP give no timing guarantee: the "good behavior" occurs at the limit...
\triangleright Sure, in one-dim., memoryless strategies suffice and provide bounds on cycles, but what if we are given an arbitrary play?

It would be nice to have... a quantitative measure that specifies timing requirements

Window objectives: key idea

■ Window of fixed size sliding along a play
\sim defines a local finite horizon

- Objective: see a local $M P \geq 0$ before hitting the end of the window
\leadsto needs to be verified at every step

Window MP, threshold zero, maximal window $=4$

Window MP, threshold zero, maximal window $=4$

Window MP, threshold zero, maximal window $=4$

Window MP, threshold zero, maximal window $=4$

Window MP, threshold zero, maximal window $=4$

Window MP, threshold zero, maximal window $=4$

Window MP, threshold zero, maximal window $=4$

Window MP, threshold zero, maximal window $=4$

Window MP, threshold zero, maximal window $=4$

Multiple variants

■ Given $I_{\max } \in \mathbb{N}_{0}$, good window $\mathbf{G W}\left(I_{\text {max }}\right)$ asks for a positive sum in at most $I_{\text {max }}$ steps (one window, from the first state)

- Direct Fixed Window: $\mathbf{D F W}\left(I_{\max }\right) \equiv \square \mathbf{G W}\left(I_{\max }\right)$
- Fixed Window: FW $\left(I_{\max }\right) \equiv \diamond$ DFW $\left(I_{\max }\right)$
- Direct Bounded Window: DBW $\equiv \exists I_{\max }$, DFW $\left(I_{\max }\right)$

■ Bounded Window: BW $\equiv \diamond \mathbf{D B W} \equiv \exists I_{\text {max }}, \mathbf{F W}\left(I_{\text {max }}\right)$

Multiple variants

■ Given $I_{\text {max }} \in \mathbb{N}_{0}$, good window $\mathbf{G W}\left(I_{\text {max }}\right)$ asks for a positive sum in at most $I_{\text {max }}$ steps (one window, from the first state)

- Direct Fixed Window: DFW $\left(I_{\max }\right) \equiv \square \mathbf{G W}\left(I_{\max }\right)$
- Fixed Window: $\mathbf{F W}\left(I_{\max }\right) \equiv \diamond \mathbf{D F W}\left(I_{\max }\right)$
- Direct Bounded Window: DBW $\equiv \exists I_{\max }$, DFW $\left(I_{\max }\right)$
- Bounded Window: BW $\equiv \diamond \mathbf{D B W} \equiv \exists I_{\max }, \mathbf{F W}\left(I_{\max }\right)$

Conservative approximations in one-dim.

$$
\text { Any window obj. } \Rightarrow \mathrm{BW} \Rightarrow \mathrm{MP} \geq 0
$$

$$
\mathbf{B W} \Leftarrow \mathrm{MP}>0
$$

Results overview

	one-dimension			k-dimension		
	complexity	\mathcal{P}_{1} mem.	$\mathcal{P}_{2} \mathrm{mem}$.	complexity	\mathcal{P}_{1} mem.	\mathcal{P}_{2} mem.
MP / MP	$N P \cap$ coNP	mem-less		coNP-c. / NP \cap coNP	infinite	mem-less
TP / TP	$N P \cap$ coNP	mem-less		undec.	-	-
WMP: fixed polynomial window	P-c.	mem. req. linear $\left(\|S\| \cdot I_{\text {max }}\right)$		PSPACE-h. EXP-easy	exponential	
WMP: fixed arbitrary window	$\mathbf{P}\left(\|S\|, V, I_{\text {max }}\right)$			EXP-c.		
WMP: bounded window problem	NP \cap coNP	mem-less	infinite	NPR-h.	-	-

$\triangleright|S|$ the \# of states, V the length of the binary encoding of weights, and $I_{\max }$ the window size

Results overview: advantages

$\triangleright|S|$ the \# of states, V the length of the binary encoding of weights, and $I_{\max }$ the window size
\triangleright For one-dim. games with poly. windows, we are in \mathbf{P}
\triangleright For multi-dim. games with fixed windows, we are decidable
\triangleright Window obj. provide timing guarantees

Taste of the proofs ingredients

■ For those who like it technical, we use
\triangleright 2CMs [Min61],
\triangleright membership problem for APTMs [CKS81],
\triangleright countdown games [JSL08] ,
\triangleright generalized reachability [FH10],
\triangleright reset nets [DFS98, Sch02, LNO ${ }^{+}$08],

- ...

■ Open question: is bounded window decidable in multi-dim. ?

Thanks to the Highlights Team

Check the full version on arXiv! abs/1302.4248

Thanks!

Do not hesitate to discuss with us!

R K. Chatterjee, L. Doyen, T.A. Henzinger, and J.-F. Raskin. Generalized mean-payoff and energy games.

In Proc. of FSTTCS, LIPIcs 8, pages 505-516. Schloss

Dagstuhl - LZI, 2010.
A.K. Chandra, D. Kozen, and L.J. Stockmeyer.

Alternation.
J. ACM, 28(1):114-133, 1981.

围 K. Chatterjee, M. Randour, and J.-F. Raskin.
Strategy synthesis for multi-dimensional quantitative objectives.
In Proc. of CONCUR, LNCS 7454, pages 115-131. Springer, 2012.

R C. Dufourd, A. Finkel, and P. Schnoebelen.
Reset nets between decidability and undecidability.
In Proc. of ICALP, LNCS 1443, pages 103-115. Springer, 1998.

國 A．Ehrenfeucht and J．Mycielski．
Positional strategies for mean payoff games．
Int．Journal of Game Theory，8（2）：109－113， 1979.
國 N．Fijalkow and F．Horn．
The surprizing complexity of generalized reachability games． CoRR，abs／1010．2420， 2010.
T．Gawlitza and H．Seidl．
Games through nested fixpoints．
In Proc．of CAV，LNCS 5643，pages 291－305．Springer， 2009.
埥 H．Gimbert and W．Zielonka．
When can you play positionally？
In Proc．of MFCS，LNCS 3153，pages 686－697．Springer， 2004.
：M．Jurdziński，J．Sproston，and F．Laroussinie．
Model checking probabilistic timed automata with one or two clocks．

Logical Methods in Computer Science，4（3）， 2008.
囯 M．Jurdziński．
Deciding the winner in parity games is in UP \cap co－UP．
Inf．Process．Lett．，68（3）：119－124， 1998.
R．R．Lazic，T．Newcomb，J．Ouaknine，A．W．Roscoe，and
J．Worrell．
Nets with tokens which carry data．
Fundam．Inform．，88（3）：251－274， 2008.
圊 M．L．Minsky．
Recursive unsolvability of Post＇s problem of＂tag＂and other topics in theory of Turing machines．
The Annals of Mathematics，74（3）：437－455， 1961.
㫜 P．Schnoebelen．
Verifying lossy channel systems has nonprimitive recursive complexity．

Inf. Process. Lett., 83(5):251-261, 2002.

(Y. Velner and A. Rabinovich.
Church synthesis problem for noisy input.
In Proc. of FOSSACS, LNCS 6604, pages 275-289. Springer, 2011.

雷 U. Zwick and M. Paterson. The complexity of mean payoff games on graphs. Theoretical Computer Science, 158:343-359, 1996.

