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The talk in one slide

Strategy synthesis for Markov Decision Processes (MDPs)

Finding good controllers for systems interacting with a
environment.

m Good? Performance evaluated through payoff functions.

m Usual problem is to optimize the or the

m Not sufficient for many practical applications.
> Several extensions, more expressive but also more complex. . .

Aim of this survey talk

Give a flavor of classical questions and extensions, illustrated on
the stochastic shortest path (55P).
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Classical Stochastic Shortest Path Problem(s)
Good expectation under acceptable worst-case
Percentile queries in multi-dimensional MDPs
Multiple environments
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m PhD from UMONS (Belgium), 2014.

> Supervised by V. Bruyére (UMONS) and J.-F. Raskin (ULB).
> Title:
(available on my website).

m Talk partly based on research pursued during my thesis.
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m PhD from UMONS (Belgium), 2014.

> Supervised by V. Bruyére (UMONS) and J.-F. Raskin (ULB).
> Title:
(available on my website).

m Talk partly based on research pursued during my thesis.

General context important to understand the motivation behind
the questions we study.
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> a reactive system to control,
> an interacting environment,
> a specification to enforce.
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:

Multi-criteria quantitative synthesis

m Verification and synthesis:

> a reactive system to control,
> an interacting environment,
> a specification to enforce.

m Model of the (discrete) interaction?

> Antagonistic environment: 2-player game on graph.
>

m Quantitative specifications. Examples:
> Reach a state s before x time units ~ shortest path.

> Minimize the average response-time ~» mean-payoff.

m Focus on multi-criteria quantitative models
> to reason about trade-offs and interplays.
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Strategy (policy) synthesis for MDPs

system environment informal
description description specification
! I e
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.
model as
model as

an MDP

a winning
objective

How complex is it to decide if
a winning strategy exists?

How complex such a strategy
needs to be? Simpler is
better.

is there a
winning
strategy ?

Can we synthesize one
efficiently?

no

empower system

capabilities —

or weaken strategy =

PR controller
specification

requirements
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Markov decision processes

i

as, 1

0.7

m MDP D = (S,SinitaA75a W)

> finite sets of states S and actions A

:

ai

l

0.9

-~

4

03 > probabilistic transition §: S x A — D(S)
2 > weight function w: A — Z
[ m Run (or play): p=s1a1...ap-15n...
22,71 b3,3

such that (s;, aj,s;+1) >0 forall i >1

01 > set of runs R(D)
. > set of histories (finite runs) (D)

m Strategy o: H(D) — D(A)
> V hending in s, Supp(o(h)) € A(s)

83,0

4
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Markov decision processes

Sample pure memoryless strategy o

0.7 w
Sample run p = s1a150a3251315232(S3335434)
0.3

2 Other possible run p' = sja15a2(s3a35334)%

/

[

m Str jies m
0.0 - b3 Strategies may use

o1 > finite or infinite memory
> randomness
S3

m Payoff functions map runs to numerical
values

-~

2t 2,0 > truncated sum up to T = {s3}:
TST(p) =2, TST(p') =1
s > mean-payoff: MP(p) = MP(p’) =1/2
> many more
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Markov chains
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Once strategy o fixed, fully stochastic process

|

81,2

& . (MC)
09 22, -1 State space = product of the MDP and the
01 memory of o

@ m Event £ C R(M)

> probability Py(E)
m Measurable f: R(M) — RU {oo},
> expected value Ep(f)

-~
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4
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Review and different types of quantitative specifications
for MDPs
> w.r.t. the complexity of the decision problem

> w.r.t. the complexity of winning strategies

Recent extensions share a common philosophy: framework for the
synthesis of strategies with richer performance guarantees

>> our work deals with many different payoff functions
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Aim of this survey
Review and different types of quantitative specifications
for MDPs
> w.r.t. the complexity of the decision problem

> w.r.t. the complexity of winning strategies

Recent extensions share a common philosophy: framework for the
synthesis of strategies with richer performance guarantees

>> our work deals with many different payoff functions

Focus on the in this talk
> not the most involved technically

> natural applications
~> useful to understand the practical interest of each variant
+ brief mention of results for other payoffs
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Classical Stochastic Shortest Path Problem(s)
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Stochastic shortest path

Shortest path problem for weighted graphs

Given state s € S and target set T C S, find a path from s to a
state t € T that minimizes the sum of weights along edges.

> PTIME algorithms (Dijkstra, Bellman-Ford, etc) [CGR96]
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Stochastic shortest path

Shortest path problem for weighted graphs

Given state s € S and target set T C S, find a path from s to a
state t € T that minimizes the sum of weights along edges.

> PTIME algorithms (Dijkstra, Bellman-Ford, etc) [CGR96]

We focus on MDPs with strictly positive weights in this talk

> Truncated sum payoff function for p = sja;spas ... and
target set T:

TST(p) = Zjnz_ll w(aj) if s, first visit of T
= oo if T is never reached
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Planning a journey in an uncertain environment
|

g0 bM
/\rail way, 2

waiting light medlum heavy
room traffic traffic traffic

relax, 35 ]dnve drive, 30 drive, 70
wait, 3 ' g /

Each action takes time, target = work.

bike, 45

0.1

> What kind of strategies are we looking for when the
environment is stochastic?
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SSP-E: minimizing the expected length to target

SSP-E problem

Given MDP D = (S, sinit, A, §, w), target set T and threshold
¢ € N, decide if there exists o such that EL(TST) < ¢.

Theorem [BT91]

The SSP-E problem can be decided in . Optimal
strategies always exist and can be constructed in
polynomial time.
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SSP-E: illustration

g b/
/\railway. 2
waiting light
room traffic
relax, 35 dnve 20 ldrive, 30 ldrive, 70
wait, 3 ' . //

> Pure memoryless strategies suffice.
> Taking the car is optimal: E¢(TST) = 33.

medium
traffic

heavy

h bike, 45
traffic e

0.1
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SSP-E: PTIME algorithm

Graph analysis (linear time)

> s not connected to T = oo and remove
>seT =0

Linear programming (LP, polynomial time)
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:

SSP-E: PTIME algorithm

Graph analysis (linear time)

> s not connected to T = oo and remove
>seT =0

Linear programming (LP, polynomial time)

For each s € S\ T, one variable xs,

under the constraints

xs < w(a)+ Z 5(s,a,8")xgs  forallse S\ T, forall a € A(s).
s'eS\T
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SSP-E: PTIME algorithm

Graph analysis (linear time)

> s not connected to T = oo and remove
>seT =0

Linear programming (LP, polynomial time)

Optimal solution v
~» Vg = expectation from s to T under an optimal strategy

Optimal pure memoryless strategy oV:

oV(s) = arg ag}\ips) w(a) + 5162527—5(5, a, 5’) “ Vg
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:

SSP-E: PTIME algorithm

Graph analysis (linear time)

> s not connected to T = oo and remove
>seT =0

Linear programming (LP, polynomial time)

In practice, value and strategy iteration algorithms often used

> best performance in most cases but exponential in the
worst-case

>> fixed point algorithms, successive solution
improvements [BT91, dA99, HM14]
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Travelling without taking too many risks

go ba/

railway, 2
0/\0-9
waiting
room
o %

wait, 3

|

car, 1
light medium
traffic traffic

(

% ] drive,QO/ drive, 30
v . /
.

e
N

N
A

bike, 45

drive, 70

Minimizing the expected time to destination makes sense if we travel
often and it is not a problem to be late.

With car, in 10% of the cases, the journey takes 71 minutes.
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Conclusion
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Travelling without taking too many risks

waiting
room

wait, 3

Most bosses will not be happy if we are late too often...

railway, 2
0-1/\0-9
0.1 0.9
A % I driviy drive, 30 drive, 70
/

bike, 45

light medium
traffic traffic

~» what if we are risk-averse and want to avoid that?
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SSP-P: forcing short paths with high probability

SSP-P problem

Given MDP D = (S, sinit, A, , w), target set T, threshold ¢ € N,
and probability threshold a € [0,1] N Q, decide if there exists a
strategy o such that P% [{p € R;,.(D) | TST(p) < £}] > .

Theorem

The SSP-P problem can be decided in
and it is . Optimal
always exist and can be constructed in

pseudo-polynomial time.

See [HK14] for hardness and for example [RRS14a] for algorithm.
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SSP-P: illustration

g0 ba/
railway, 2
/\ 0.2

0.1 0.9
waiting light
room traffic
0.9
o1 drive, 30 _4 drive, 70

relax, 35 Idrive, 20
wait, 3 \ N\ /
/

medium

. bike, 45
traffic

Specification: reach work within 40 minutes with 0.95 probability
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:

SSP-P: illustration

car, 1
0.2 07 0.1
medium
traffic

% I driviy drive, 30 drive, 70

Specification: reach work within 40 minutes with 0.95 probability
Sample strategy: take the train ~ Pg [TS""°rk < 40] =0.99
Bad choices: car (0.9) and bike (0.0)
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:

SSP-P: pseudo-PTIME algorithm (1/2)

Key idea: pseudo-PTIME reduction to the stochastic reachability
problem (SR)
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:

SSP-P: pseudo-PTIME algorithm (1/2)

Key idea: pseudo-PTIME reduction to the
(SR)

SR problem

Given unweighted MDP D = (S, sinit, A, d), target set T and
probability threshold o € [0,1] N Q, decide if there exists a strategy
o such that PE[OT] > .

Theorem
The SR problem can be decided in . Optimal
always exist and can be constructed in
polynomial time.
> linear programming (similar to SSP-E)
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:

SSP-P: pseudo-PTIME algorithm (2/2)
0.5

Sketch of the reduction
Start from D, T = {s;}, and £ =7.
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:

SSP-P: pseudo-PTIME algorithm (2/2)
0.5

Sketch of the reduction
Start from D, T = {s}, and { = 7.

Build Dy by unfolding D, tracking the current sum up to the
threshold ¢, and integrating it in the states of the expanded
MDP.
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SSP-P: pseudo-PTIME algorithm (2/2)
0.5
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SSP-P: pseudo-PTIME algorithm (2/2)
0.5
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SSP-P: pseudo-PTIME algorithm (2/2)
0.5

a, 2

51,2
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SSP-P: pseudo-PTIME algorithm (2/2)
0.5

s1,4
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SSP-P: pseudo-PTIME algorithm (2/2)
0.5
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SSP-P: pseudo-PTIME algorithm (2/2)
0.5
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SSP-P: pseudo-PTIME algorithm (2/2)
0.5
— a, 2
b, 5 \ 0.5
s1, L
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SSP-P: pseudo-PTIME algorithm (2/2)
Bijection between runs of D and Dy

TST(p) <t & pJEOT, T'=Tx{0,1,...

L}
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SSP-P: pseudo-PTIME algorithm (2/2)
Bijection between runs of D and Dy
TST(p) <t & pPEOT, T =Tx{0,1,...,0}

Solve the SR problem on Dy

> Memoryless strategy in Dy ~ pseudo-polynomial memory in D
in general

—{ 51,0 \
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SSP-PQ SSP-ME

Context SSP-E/SSP-P SSP-WE
00000000 000000

000000 000000000080 0000000000

Conclusion
[e]e]e]

SSP-P: pseudo-PTIME algorithm (2/2)

If we just want to minimize the risk of exceeding £ =7,
> an obvious possibility is to play b directly,
>> playing a only once is also acceptable.

For the SSP-P problem, both strategies are equivalent

b, 5 $,2 b, 5 (52,4
/ - N\ / \
5.5 5,7 )
\ /
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:

Related work

m SSP-P problem [Oht04, SO13].

m Quantile queries [UB13]: minimizing the value ¢ of an SSP-P
problem for some fixed «. Recently extended to cost
problems [HK14].

m SSP-E problem in multi-dimensional MDPs [FKN*11].
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Good expectation under acceptable worst-case
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:

SP-G: strict worst-case guarantees
!

g b/

vallway 2
waiting
room

relax, 35 ]drive, 20 drive, 30 drive, 70
wait, 3 Py //

Specification: guarantee that work is reached within 60 minutes
(to avoid missing an important meeting)

heavy bike, 45
traffic

0.
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000000 000000000000 0O@00000000 00000000 000000 000
:

SP-G: strict worst-case guarantees
!

g back)/

railway, 2 car, 1

0.1 0.9
waiting light medium heavy
room traffic traffic traffic

©,
guarantee that work is reached within 60 minutes
(to avoid missing an important meeting)
Sample strategy: take the bike ~ ¥V p € Out%: TS"(p) < 60
Bad choices: train (wc = o0) and car (wec = 71)

bike, 45
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000000 000000000000 0O@00000000 00000000 000000 000
:

SP-G: strict worst-case guarantees
!

g b/

railway, 2 car, 1
0.1 0.9
waiting light medium heavy
room traffic traffic traffic

01 09
3 relax, 35 ]drive, 20 drive, 30 drive, 70
wait, 3 \ 7N //

Winning surely (worst-case) # almost-surely (proba. 1)

bike, 45

> train ensures reaching work with probability one, but does not
prevent runs where work is never reached
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000000 000000000000 0O@00000000 00000000 000000 000
:

SP-G: strict worst-case guarantees
!

g b/

railway, 2 car, 1
0.1 0.9
waiting light medium heavy
room traffic traffic traffic

01 09
3 relax, 35 ]drive, 20 drive, 30 drive, 70
wait, 3 \ 7N //

Worst-case analysis ~ two-player game against an antagonistic
adversary

bike, 45

> forget about probabilities and give the choice of transitions to
the adversary
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:

SP-G: shortest path game problem

SP-G problem

Given MDP D = (S, sinit, A, d, w), target set T and threshold
¢ € N, decide if there exists a strategy o such that for all
p € Out?, we have that TS (p) < 4.

Theorem [KBB*08]

The SP-G problem can be decided in . Optimal
strategies always exist and can be constructed in
polynomial time.

> Does not hold for arbitrary weights.
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:

Related work

m Pseudo-PTIME for arbitrary weights [BGHM14, FGR12].

m Arbitrary weights + multiple dimensions ~ undecidable (by
adapting the proof of [CDRR13] for total-payoff).
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:

SP-G: PTIME algorithm

Cycles are bad = must reach target within n = |S| steps

VseS,Vi,0<i<n, compute C(s,i)
> lowest bound on cost to T from s that we can ensure in i steps
> dynamic programming (polynomial time)

Initialize
Vse T,C(s,0)=0 Vse S\ T, C(s,0) =0
Then, Vse S, Vi, 1<i<n,

C(s, ) = min [(C(s7 i—1), agﬂAi(ns) s’GSqua(g((s,a)) w(a)+C(s',i—1)

Winning strategy iff C(sjnit, n) < ¢
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:

SSP-WE = SP-G N SSP-E - illustration

gob/

railway, 2 car, 1
0.1 0.9
waiting light medium heavy
room traffic traffic traffic

o1 0.9
) relax, 35 ]drive, 20 drive, 30 drive, 70
wait, 3 \ N //

bike, 45

m SSP-E: car ~ E =33 but we = 71 > 60
m SP-G: bike ~ wec =45 < 60 but £ — 45 >>> 33
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| 000000 000000000000 0000080000 00000000 000000 000
SSP-WE = SP-G N SSP-E - illustration
|

o b/A

railway, 2 car, 1
0.1 0.9
waiting light medium heavy
room traffic traffic traffic

o1 0.9
i relax, 35 ]drive, 20 drive, 30 drive, 70
wait, 3 \ i //

bike, 45

Can we do better?

> Beyond worst-case synthesis [BFRR14b, BFRR14a]:
minimize the expected time under the worst-case constraint.
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| 000000 000000000000 0000080000 00000000 000000 000
SSP-WE = SP-G N SSP-E - illustration
|

railway, 2 car, 1
0.1 0.9
waiting light medium heavy
room traffic traffic traffic

o1 0.9
: relax, 35 ]drive, 20 drive, 30 drive, 70
wait, 3 \ 7~ //

bike, 45

Sample strategy: try train up to 3 delays then switch to bike.
~ wc =58 <60 and E ~ 37.34 << 45

~» pure finite-memory strategy
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:

SSP-WE: beyond worst-case synthesis

SSP-WE problem

Given MDP D = (S, sinit, A, §, w), target set T, and thresholds
l1,0> € N, decide if there exists a strategy o such that:

VpeOutd: TST(p) < 4,
EZ(TST) < 4,.

Theorem [BFRR14b]

The SSP-WE problem can be decided in

and is . strategies are
always sufficient and in general necessary, and satisfying strategies
can be constructed in pseudo-polynomial time.
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SSP-WE: pseudo-PTIME algorithm

0.5

Consider SSP-WE problem for ¢1 =7 (wc), > = 4.8 (E).
> Reduction to the SSP-E problem on a pseudo-polynomial-size
expanded MDP.

Build unfolding as for SSP-P problem w.r.t. worst-case
threshold /5.
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SSP-WE: pseudo-PTIME algorithm
0.5
s1, L
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000000 000000000000 0000000800 00000000 000000

Conclusion
[e]e]e]

a2 /\ a2
—( 5,0 ; o

SSP-WE: pseudo-PTIME algorithm

Compute R, the attractor of /' =T x {0,1,...,¢1}.
Restrict MDP to D" = Dy, | R, the safe part w.r.t. SP-G.

‘ - ‘
b, 5 | 52,2 ) b, 5 ( s2,4 )
- 7\
[ 5,7 |
N/
Stochastic Shortest Path Revisited Randour, Raskin, Sankur
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:

SSP-WE: pseudo-PTIME algorithm

Compute R, the attractor of /' =T x {0,1,...,¢1}.
Restrict MDP to D" = Dy, | R, the safe part w.r.t. SP-G.
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:

SSP-WE: pseudo-PTIME algorithm

Compute memoryless optimal strategy o in D’ for SSP-E.
Answer is YES iff E2,(TST') < £.
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000000 000000000000 0000000800 00000000 000000 000
:

SSP-WE: pseudo-PTIME algorithm

Compute memoryless optimal strategy o in D’ for SSP-E.
Answer is YES iff E2,(TST') < £.

Here,
7(TST) = 9/2

Stochastic Shortest Path Revisited Randour, Raskin, Sankur 30/49



Context SSP-E/SSP-P SSP-WE SSP-PQ SSP-ME Conclusion

000000 000000000000 0000000000 00000000 000000 000
:

SSP-WE: wrap-up

‘ SSP H complexity strategy
SSP-E PTIME pure memoryless
SSP-P pseudo-PTIME / PSPACE-h. | pure pseudo-poly.
SSP-G PTIME pure memoryless

> NP-hardness = inherently harder than SSP-E and SSP-G.
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Context SSP-E/SSP-P
000000 000000000000

SSP-WE
0000000008

SSP-PQ SSP-ME
00000000 000000

Conclusion

000

Beyond worst-case synthesis for mean-payoff

‘ MP H complexity strategy
MP-E PTIME pure memoryless
MP-G NP N coNP pure memoryless

NP N coNP

> Long-run average of weights [EM79], subsumes parity

games [Jur98|.

> Additional modeling power for free.

> Much more involved technically [BFRR14b, BFRR14a].

Stochastic Shortest Path Revisited

Randour, Raskin, Sankur
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Percentile queries in multi-dimensional MDPs
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:

Multiple objectives = trade-offs
J

0.3

bus, 30, 3 taxi, 10, 20

Two-dimensional weights on actions: time and cost.

Often necessary to consider . e.g., between the probability
to reach work in due time and the risks of an expensive journey.
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:

Multiple objectives = trade-offs
|

bus, 30, 3 taxi, 10, 20

SSP-P problem considers a single percentile constraint.
m C1: 80% of runs reach work in at most 40 minutes.
> Taxi ~ < 10 minutes with probability 0.99 > 0.8.
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Multiple objectives = trade-offs
J

bus, 30, 3 taxi, 10, 20

SSP-P problem considers a
m C1: 80% of runs reach work in at most 40 minutes.
> Taxi ~ < 10 minutes with probability 0.99 > 0.8.
m C2: 50% of them cost at most 10$ to reach work.
> Bus ~» > 70% of the runs reach work for 3$.
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000000 000000000000 0000000000 0@000000 000000 000
:

Multiple objectives = trade-offs
J

bus, 30, 3 taxi, 10, 20

SSP-P problem considers a
m C1: 80% of runs reach work in at most 40 minutes.
> Taxi ~ < 10 minutes with probability 0.99 > 0.8.
m C2: 50% of them cost at most 10$ to reach work.
> Bus ~» > 70% of the runs reach work for 3$.

Taxi j= C2, bus £ C1. What if we want C1 A C27
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:

Multiple objectives = trade-offs
J

bus, 30, 3 taxi, 10, 20

m C1: 80% of runs reach work in at most 40 minutes.
m C2: 50% of them cost at most 10$ to reach work.

Study of [RRS14a).
> Sample strategy: bus once, then taxi. Requires memory.

> Another strategy: bus with probability 3/5, taxi with
probability 2/5. Requires randomness.
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:

Multiple objectives = trade-offs
|

bus, 30, 3 taxi, 10, 20

m C1: 80% of runs reach work in at most 40 minutes.
m C2: 50% of them cost at most 10$ to reach work.

Study of multi-constraint percentile queries [RRS14a].
In general, both memory and randomness are required.

# previous problems
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: :

SSP-PQ: multi-constraint percentile queries (1/2)
SSP-PQ problem

Given d-dimensional MDP D = (S, sinit, A, d, w), and g € N
percentile constraints described by target sets T; C S, dimensions
ki € {1,...,d}, value thresholds ¢; € N and probability thresholds
a; €[0,1]NQ, where i € {1,...,q}, decide if there exists a
strategy o such that

Vie{l,...,q}, PR[TS] < 4] > oy

where TS denotes the truncated sum on dimension k; and
w.r.t. target set T;.

Very general framework allowing for: multiple constraints related
to # dimensions, and # target sets.
~» Great flexibility in modeling applications.
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:

SSP-PQ: multi-constraint percentile queries (2/2)

Theorem [RRS14a]

The SSP-PQ problem can be decided in

| in general,

[ for single-dimension single-target
multi-contraint queries.

It is even for single-constraint queries.

strategies are always sufficient and in general
necessary, and satisfying strategies can be constructed in
exponential time.

> PSPACE-hardness already true for SSP-P [HK14].

~» SSP-PQ = wide extension for basically no price in complexity.
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:

SSP-PQ: EXPTIME / pseudo-PTIME algorithm

Build an unfolded MDP D, similar to SSP-P case:
> stop unfolding when all dimensions reach sum ¢ = max; ¢;.
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:

SSP-PQ: EXPTIME / pseudo-PTIME algorithm

Build an unfolded MDP D, similar to SSP-P case:
> stop unfolding when all dimensions reach sum ¢ = max; ¢;.

Maintain single-exponential size by defining an equivalence
relation between states of Dy:

> S CSx({0,....0u{Lh)
> pseudo-poly. if d =1.
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:

SSP-PQ: EXPTIME / pseudo-PTIME algorithm

Build an unfolded MDP D, similar to SSP-P case:
> stop unfolding when all dimensions reach sum ¢ = max; ¢;.

Maintain single-exponential size by defining an equivalence
relation between states of Dy:

> S CSx({0,....0u{Lh)
> pseudo-poly. if d =1.

For each constraint i/, compute a target set R; in Dy:
> p = constraint i in D < p' = OR; in Dy.
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:

SSP-PQ: EXPTIME / pseudo-PTIME algorithm

Build an unfolded MDP D, similar to SSP-P case:
> stop unfolding when all dimensions reach sum ¢ = max; ¢;.

Maintain single-exponential size by defining an equivalence
relation between states of Dy:

> S CSx({0,....0pu{L}),
> pseudo-poly. if d =1.

For each constraint i/, compute a target set R; in Dy:
> p = constraint i in D < p' = OR; in Dy.

Solve a on Dy.
> Generalizes the SR problem [EKVY08, RRS14a].
> Time polynomial in |Dy| but exponential in g.
> Single-dim. single target queries = absorbing targets
= polynomial-time algorithm.
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:

SSP-PQ: wrap-up

‘ SSP H complexity strategy
SSP-E PTIME pure memoryless
SSP-P pseudo-PTIME / PSPACE-h. pure pseudo-poly.
SSP-G PTIME pure memoryless

SSP-WE pseudo-PTIME / NP-h. pure pseudo-poly.
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: :

Related work and additional results

m Cost problems [HK14]: 3?0, P%[TST | ¢] > o
> Boolean combination of inequalities (.
> Orthogonal to percentiles queries.
> Single-dimensional MDPs and single target T.
> Threshold o bounds the probability of the whole event ¢
whereas SSP-PQ analyze each event independently.
> Incomparable in general, SSP-P as a common subclass.

m SSP-PQ is undecidable for arbitrary weights in
multi-dimensional MDPs, even with a unique target
set [RRS14a].
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Percentile queries: other payoff functions

In [RRS14a], we study a . reachability, inf,
sup, liminf, lim sup, mean-payoff, shortest path (truncated sum),
discounted sum.

> In the most general setting, complexity is

> Only PTIME for fixed query size for all payoffs but the
discounted sum.

> Reduced complexity for single-dimension or single-constraint
queries.

> Most technically involved cases are infimum mean-payoff and
discounted sum.
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Multiple environments
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Imperfect a priori knowledge of the environment

can5 5 ‘\
— 09
go 10

A
alternative, 25 0.1
walk 2 vgo. 15

un 1 0.9

Y
@ alt 1 go 35

Probabilities represent a model of the environment.
> Probability of a train coming # when there is a strike.
> We may not know about the strike. ..

How to synthesize strategies with guarantees against
(e.g., strike or not)?
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Imperfect a priori knowledge of the environment

can5 5 ‘\
— 09
go 10

S
alternative, 25 0.1
walk 2 ego, 15

un 1 0.9

Y
@ alt 1 go 35

Four possible environments, no a priori knowledge of which one we
face:

() no problem,
(S) strike (no train) = wait always leads back to station,
(A) accident (highway blocked) = go from hy always stays in hy,
(AS) both.
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Imperfect a priori knowledge of the environment

0.1
car, 5 ‘\ 0.9
— -—— —
go, 10
S
alternative, 25 0.1

walk, 2 ego, 15
run, 1 0.9
Y
wait, 1 go, 35
. > -
0.9
0.1

Specification: we want ¢ such that
s PG[TST < 40] > 0.95, m P72, [TST < 40] >0.95,

m P2 [TST <50] > 0.95, m P o [TST < 75] > 0.95.
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Imperfect a priori knowledge of the environment

0.1
car, 5 ‘\_ 0.9
— -— > —
go, 10
A
alternative, 25 0.1

walk, 2 ego, 15
run, 1 0.9
Y
wait, 1 go, 35
. > —
0.9
0.1

we want o such that
= P3[TST < 40] > 0.95, m P72, [TST < 40] >0.95,

m P2 [TST <50] > 0.95, m P o [TST < 75] > 0.95.

Taking the car right away does not ensure to reach work within 40
minutes with probability > 0.95 even when no accident.
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Imperfect a priori knowledge of the environment

0.1
car, 5 ‘\_ 0.9
— -— > —
go, 10
A
alternative, 25 0.1

walk, 2 ego, 15
run, 1 0.9
Y
wait, 1 go, 35
. > —
0.9
0.1

we want o such that
= P3[TST < 40] > 0.95, m P72, [TST < 40] >0.95,

m P2 [TST <50] > 0.95, m P o [TST < 75] > 0.95.

Taking the car right away does not ensure to reach work within 40
minutes with probability > 0.95 even when no accident.

Never switching to car means certain doom if strike.
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Imperfect a priori knowledge of the environment

0.1
car, 5 ‘\_ 0.9
_ P 09
go, 10

alternative, 25

X
0.1
walk, 2 ego, 15
run, 1 0.9
Y
wait, 1 go, 35
. > —
0.9
0.1

we want o such that
= P3[TST < 40] > 0.95, m P72, [TST < 40] >0.95,

m P2 [TST <50] > 0.95, m P o [TST < 75] > 0.95.

Sample strategy:
> go to the station and wait twice,
> if no train, go back and take car,

> take alternative road if we failed to progress twice using go.
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SSP-ME: multi-environment MDPs (1/2)

SSP-ME problem

Given multi-environment

MDP D = (5, Sinit, A, (5i)1§i§ka (W;)lsisk), target set T,
thresholds ¢1,...,¢x € N, and probabilities o, ..., a, € [0,1]NQ,
decide if there exists a strategy o satisfying

Vie{l,... .k}, PR[TST < 4] > a;.

Focus on qualitative variants.
> Almost-sure: a1 = ... = o, = 1.
> Limit-sure: answer is YES for all (au, ..., ax) €]0, 1[F
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SSP-ME: multi-environment MDPs (2/2)

Theorem [RS14]

The almost-sure and limit-sure SSP-ME problems can be solved in
for a fixed number of environments.
suffices for the almost-sure case, and a family of
finite-memory strategies that witnesses the limit-sure problem can
be computed.

In the quantitative case, approximate version of the problem.

Theorem [RS14]

The SSP-ME problem and the e-gap SSP-ME are . For
any € > 0, there is a procedure for the e-gap SSP-ME problem.
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SSP-ME: learning components

Key idea: identify learning components that can be used to
determine almost-surely (resp. limit-surely) the current
environment.

> By playing long enough, one can guess the environment with
arbitrarily high probability ( ).
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SSP-ME: learning components

Key idea: identify learning components that can be used to
determine almost-surely (resp. limit-surely) the current
environment.

> One move suffices to determine the environment with
certainty.
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Context SSP-E/SSP-P

SSP-WE SSP-PQ SSP-ME Conclusion
SSP-ME: wrap-up
’ SSP H complexity strategy
SSP-E PTIME pure memoryless
SSP-P pseudo-PTIME / PSPACE-h. pure pseudo-poly.
SSP-G PTIME pure memoryless
SSP-WE pseudo-PTIME / NP-h. pure pseudo-poly.
SSP-PQ EXPTIME (p.-PTIME) / PSPACE-h. | randomized exponential

> Study of [RS14] limited to reachability, safety and parity
objectives with two environments.
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Summary: stochastic shortest path problem

m SSP-E: minimize the expected sum to target.
> Actual outcomes may vary greatly.
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Summary: stochastic shortest path problem

m SSP-E: minimize the expected sum to target.
> Actual outcomes may vary greatly.

m SSP-P: maximize the probability of acceptable performance.
> No control over the quality of bad runs, no average-case
performance.
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Summary: stochastic shortest path problem

m SSP-E: minimize the expected sum to target.
> Actual outcomes may vary greatly.

m SSP-P: maximize the probability of acceptable performance.
> No control over the quality of bad runs, no average-case
performance.

m SP-G: maximize the worst-case performance, extreme
risk-aversion.
> Strict worst-case guarantees, no average-case performance.
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m SSP-E: minimize the expected sum to target.
> Actual outcomes may vary greatly.

m SSP-P: maximize the probability of acceptable performance.
> No control over the quality of bad runs, no average-case
performance.

m SP-G: maximize the worst-case performance, extreme
risk-aversion.
> Strict worst-case guarantees, no average-case performance.

m SSP-WE: SSP-E N SP-G.
> Based on beyond worst-case synthesis [BFRR14b, BFRR14a].
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Summary: stochastic shortest path problem

m SSP-E: minimize the expected sum to target.
> Actual outcomes may vary greatly.

m SSP-P: maximize the probability of acceptable performance.
> No control over the quality of bad runs, no average-case
performance.

m SP-G: maximize the worst-case performance, extreme
risk-aversion.
> Strict worst-case guarantees, no average-case performance.

m SSP-WE: SSP-E N SP-G.
> Based on beyond worst-case synthesis [BFRR14b, BFRR14a].

m SSP-PQ: extends SSP-P to multi-constraint percentile
queries [RRS14al].

> Multi-dimensional, flexible, trade-offs.
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Summary: stochastic shortest path problem

m SSP-E: minimize the expected sum to target.
> Actual outcomes may vary greatly.

m SSP-P: maximize the probability of acceptable performance.
> No control over the quality of bad runs, no average-case
performance.
m SP-G: maximize the worst-case performance, extreme
risk-aversion.
> Strict worst-case guarantees, no average-case performance.
m SSP-WE: SSP-E N SP-G.
> Based on beyond worst-case synthesis [BFRR14b, BFRR14a].
m SSP-PQ: extends SSP-P to multi-constraint percentile
queries [RRS14al].
> Multi-dimensional, flexible, trade-offs.
m SSP-ME: multi-environment MDPs [RS14].

> Overcomes uncertainty about the stochastic model.
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Thank you! Any question?
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