Synthesis in Multi-Criteria Quantitative Games

Mickael Randour

Advisors: Véronique Bruyère & Jean-François Raskin

Mons - 18.04.2014

Private PhD Thesis Defense

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion
000000000	00000000	00	0000	000

1 Synthesis in Quantitative Games

- 2 Beyond Worst-Case Synthesis
- 3 Multi-Dimension Objectives
- 4 Window Objectives
- 5 Conclusion and Future Work

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion
000000000	00000000	00	0000	000

1 Synthesis in Quantitative Games

- 2 Beyond Worst-Case Synthesis
- 3 Multi-Dimension Objectives
- 4 Window Objectives
- 5 Conclusion and Future Work

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion
● ○ ○○○○○○○	00000000	00	0000	000

General context

- Verification and synthesis:
 - > a reactive **system** to *control*,
 - > an *interacting* environment,
 - ▷ a **specification** to *enforce*.

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion
● 0 00000000	00000000	00	0000	000

General context

- Verification and synthesis:
 - > a reactive **system** to *control*,
 - > an *interacting* environment,
 - ▷ a **specification** to *enforce*.
- Qualitative and quantitative specifications.

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion
● 0 00000000	00000000	00	0000	000

General context

- Verification and synthesis:
 - > a reactive **system** to *control*,
 - > an *interacting* environment,
 - ▷ a **specification** to *enforce*.
- Qualitative and quantitative specifications.
- Focus on multi-criteria quantitative models
 - ▷ to reason about *trade-offs* and *interplays*.

- Graph $\mathcal{G} = (S, E, w)$ with $w \colon E \to \mathbb{Z}$
- Deterministic transitions
- Two-player game $G = (\mathcal{G}, S_1, S_2)$
 - $\begin{array}{l} \triangleright \ \ \mathcal{P}_1 \ \text{states} = \bigcirc \\ \triangleright \ \ \mathcal{P}_2 \ \text{states} = \square \end{array}$
- Plays have values
 - $\triangleright \ f: \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \operatorname{Prefs}_i(G) \to \mathcal{D}(S)$
 - ▷ Finite memory \Rightarrow stochastic output Moore machine $\mathcal{M}(\lambda_i) = (\text{Mem}, m_0, \alpha_u, \alpha_n)$

- Graph $\mathcal{G} = (S, E, w)$ with $w \colon E \to \mathbb{Z}$
- Deterministic transitions
- Two-player game $G = (G, S_1, S_2)$
 - $\begin{array}{l} \triangleright \ \ \mathcal{P}_1 \ \text{states} = \bigcirc \\ \triangleright \ \ \mathcal{P}_2 \ \text{states} = \square \end{array} \end{array}$
- Plays have values
 - $\triangleright \ f: \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \operatorname{Prefs}_i(G) \to \mathcal{D}(S)$
 - ▷ Finite memory \Rightarrow stochastic output Moore machine $\mathcal{M}(\lambda_i) = (\text{Mem}, m_0, \alpha_u, \alpha_n)$

- Graph $\mathcal{G} = (S, E, w)$ with $w \colon E \to \mathbb{Z}$
- Deterministic transitions
- Two-player game $G = (\mathcal{G}, S_1, S_2)$
 - $\begin{array}{l} \triangleright \ \ \mathcal{P}_1 \ \text{states} = \bigcirc \\ \triangleright \ \ \mathcal{P}_2 \ \text{states} = \square \end{array} \end{array}$
- Plays have values
 - $\triangleright \ f: \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \operatorname{Prefs}_i(G) \to \mathcal{D}(S)$
 - ▷ Finite memory \Rightarrow stochastic output Moore machine $\mathcal{M}(\lambda_i) = (\text{Mem}, m_0, \alpha_u, \alpha_n)$

- Graph $\mathcal{G} = (S, E, w)$ with $w \colon E \to \mathbb{Z}$
- Deterministic transitions
- Two-player game $G = (G, S_1, S_2)$
 - $\begin{array}{l} \triangleright \ \ \mathcal{P}_1 \ \text{states} = \bigcirc \\ \triangleright \ \ \mathcal{P}_2 \ \text{states} = \square \end{array} \end{array}$
- Plays have values
 - $\triangleright \ f: \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \operatorname{Prefs}_i(G) \to \mathcal{D}(S)$
 - ▷ Finite memory \Rightarrow stochastic output Moore machine $\mathcal{M}(\lambda_i) = (\text{Mem}, m_0, \alpha_u, \alpha_n)$

- Graph $\mathcal{G} = (S, E, w)$ with $w \colon E \to \mathbb{Z}$
- Deterministic transitions
- Two-player game $G = (\mathcal{G}, S_1, S_2)$
 - $\begin{array}{l} \triangleright \ \ \mathcal{P}_1 \ \text{states} = \bigcirc \\ \triangleright \ \ \mathcal{P}_2 \ \text{states} = \square \end{array}$
- Plays have values
 - $\triangleright f: \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \operatorname{Prefs}_i(G) \to \mathcal{D}(S)$
 - ▷ Finite memory \Rightarrow stochastic output Moore machine $\mathcal{M}(\lambda_i) = (\text{Mem}, m_0, \alpha_u, \alpha_n)$

- Graph $\mathcal{G} = (S, E, w)$ with $w \colon E \to \mathbb{Z}$
- Deterministic transitions
- Two-player game $G = (\mathcal{G}, S_1, S_2)$
 - $\begin{array}{l} \triangleright \ \ \mathcal{P}_1 \ \text{states} = \bigcirc \\ \triangleright \ \ \mathcal{P}_2 \ \text{states} = \square \end{array}$
- Plays have values
 - $\triangleright \ f: \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \operatorname{Prefs}_i(G) \to \mathcal{D}(S)$
 - ▷ Finite memory \Rightarrow stochastic output Moore machine $\mathcal{M}(\lambda_i) = (\text{Mem}, m_0, \alpha_u, \alpha_n)$

Then, $(2, 5, 2)^{\omega}$

- Graph $\mathcal{G} = (S, E, w)$ with $w \colon E \to \mathbb{Z}$
- Deterministic transitions
- Two-player game $G = (\mathcal{G}, S_1, S_2)$
 - $\begin{array}{l} \triangleright \ \ \mathcal{P}_1 \ \text{states} = \bigcirc \\ \triangleright \ \ \mathcal{P}_2 \ \text{states} = \square \end{array}$
- Plays have values
 - $\triangleright \ f: \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \operatorname{Prefs}_i(G) \to \mathcal{D}(S)$
 - ▷ Finite memory \Rightarrow stochastic output Moore machine $\mathcal{M}(\lambda_i) = (\text{Mem}, m_0, \alpha_u, \alpha_n)$

00 00 00000 00000000 00 0000 000 000	Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion
	000000000	00000000	00	0000	000

Markov decision processes

MDP P = (G, S₁, S_Δ, Δ) with Δ: S_Δ → D(S)
P₁ states = ○
stochastic states = □
MDP = game + strategy of P₂
P = G[λ₂]

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion 000

Markov chains

- MC $M = (\mathcal{G}, \delta)$ with $\delta \colon S \to \mathcal{D}(S)$
- $\blacksquare MC = MDP + strategy of \mathcal{P}_1$
 - = game + both strategies

$$\triangleright \ M = P[\lambda_1] = G[\lambda_1, \lambda_2]$$

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion 000

Markov chains

- MC $M = (\mathcal{G}, \delta)$ with $\delta \colon S \to \mathcal{D}(S)$
- $MC = MDP + strategy of \mathcal{P}_1$
 - = game + both strategies

$$> M = P[\lambda_1] = G[\lambda_1, \lambda_2]$$

- Event $\mathcal{A} \subseteq \mathsf{Plays}(\mathcal{G})$ \triangleright probability $\mathbb{P}^M_{s_{\mathsf{init}}}(\mathcal{A})$
- Measurable f: Plays $(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$ \triangleright expected value $\mathbb{E}^{M}_{\text{Snit}}(f)$

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion
000000000	00000000	00	0000	000

Winning semantics and decision problems

- **Qualitative** objectives $\phi \subseteq \text{Plays}(G)$
 - $\triangleright \ \lambda_1 \text{ surely winning: } \forall \lambda_2 \in \Lambda_2, \ \mathsf{Outs}_G(s_{\mathsf{init}}, \lambda_1, \lambda_2) \subseteq \phi$
 - $\triangleright \ \lambda_1 \text{ almost-surely winning: } \forall \lambda_2 \in \Lambda_2, \mathbb{P}^{G[\lambda_1,\lambda_2]}_{s_{\text{init}}}(\phi) = 1$

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion
000000000	00000000	00	0000	000

Winning semantics and decision problems

- **Qualitative** objectives $\phi \subseteq Plays(G)$
 - $\triangleright \ \lambda_1 \text{ surely winning: } \forall \lambda_2 \in \Lambda_2, \ \mathsf{Outs}_G(s_{\mathsf{init}}, \lambda_1, \lambda_2) \subseteq \phi$
 - $\triangleright \ \lambda_1 \text{ almost-surely winning: } \forall \lambda_2 \in \Lambda_2, \mathbb{P}^{G[\lambda_1, \lambda_2]}_{s_{\text{init}}}(\phi) = 1$
- **Quantitative** objectives f: Plays $(G) \rightarrow \mathbb{R} \cup \{-\infty, \infty\}$

 \triangleright worst-case threshold problem, $\mu \in \mathbb{Q}$:

 $\exists ? \lambda_1 \in \Lambda_1, \forall \lambda_2 \in \Lambda_2, \forall \pi \in \mathsf{Outs}_G(s_{\mathsf{init}}, \lambda_1, \lambda_2), f(\pi) \ge \mu$

 $\vartriangleright \text{ expected value threshold problem (MDP), } \nu \in \mathbb{Q}:$ $\exists ? \lambda_1 \in \Lambda_1, \mathbb{E}_{s_{\text{init}}}^{P[\lambda_1]}(f) \geq \nu$

Classical qualitative objectives

• Reach_G(T) = {
$$\pi = s_0 s_1 s_2 \dots \in \mathsf{Plays}(G) \mid \exists i \in \mathbb{N}, s_i \in T$$
}

Buchi_G(T) = {
$$\pi = s_0 s_1 s_2 \dots \in \mathsf{Plays}(G) \mid \mathsf{Inf}(\pi) \cap T \neq \emptyset$$
}

Parity_G = {
$$\pi = s_0 s_1 s_2 \dots \in \mathsf{Plays}(G) \mid \mathsf{Par}(\pi) \mod 2 = 0$$
}

Classical quantitative objectives and value functions

• Total-payoff:
$$\underline{TP}(\pi) = \liminf_{n \to \infty} \sum_{i=0}^{i=n-1} w((s_i, s_{i+1}))$$

• Mean-payoff:
$$\underline{\mathsf{MP}}(\pi) = \liminf_{n \to \infty} \frac{1}{n} \sum_{i=0}^{i=n-1} w((s_i, s_{i+1}))$$

- Shortest path: truncated sum up to first visit of $T \subseteq S$
- Energy: keep the running sum positive at all times

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion
0000000000	00000000	00	0000	000

Single-criterion models - known results

		reachability	Büchi	parity
CANTE	complexity	P-c.		$UP\capcoUP$
GAMES	\mathcal{P}_1 mem.	pure memoryless		
sure sem.	\mathcal{P}_2 mem.			5
MDPS	complexity	P-c.		
almost-sure sem.	\mathcal{P}_1 mem.	pure memoryless		

		TP	MP	SP	EG
GAMES worst-case	complexity	$UP\capcoUP$		P-c.	$UP\capcoUP$
	\mathcal{P}_1 mem.	pure memoryless			
	\mathcal{P}_2 mem.				
MDPS	complexity	P-c.		n/2	
expected value	\mathcal{P}_1 mem.	pure memoryless		ii/d	

Shift from single-criterion models to multi-criteria ones.

Synthesis in Multi-Criteria Quantitative Games

M. Randour (advisors: V. Bruyère & J.-F. Raskin)

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion
000000000	00000000	00	0000	000

1 Synthesis in Quantitative Games

- 2 Beyond Worst-Case Synthesis
- 3 Multi-Dimension Objectives
- 4 Window Objectives
- 5 Conclusion and Future Work

Combining two classical models

Example: going to work

- Weights = minutes
- Goal: minimize our expected time to reach "work"
- But, important meeting in one hour! Requires strict guarantees on the worst-case reaching time.

Example: going to work

- Optimal expectation strategy: car.
 - $\mathbb{E} = 33$, WC = 71 > 60.
- Optimal worst-case strategy: bicycle.
 - $\mathbb{E} = WC = 45 < 60.$

Example: going to work

- Optimal expectation strategy: car.
 - $\mathbb{E} = 33$, WC = 71 > 60.
- Optimal worst-case strategy: bicycle.

• $\mathbb{E} = WC = 45 < 60.$

- Sample BWC strategy: try train up to 3 delays then switch to bicycle.
 - E ≈ 37.56, WC = 59 < 60.
 - Optimal E under WC constraint
 - Uses finite memory

Beyond worst-case synthesis

Formal definition

Given

•
$$G = (\mathcal{G}, S_1, S_2)$$
, $s_{\mathsf{init}} \in S$,

- a finite-memory stochastic model $\lambda_2^{\text{stoch}} \in \Lambda_2^F$ of the adversary,
- a measurable value function $f : Plays(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$, and two thresholds $\mu, \nu \in \mathbb{Q}$,

the beyond worst-case (BWC) problem asks to decide if \mathcal{P}_1 has a finite-memory strategy $\lambda_1 \in \Lambda_1^F$ such that

$$(\forall \lambda_2 \in \Lambda_2, \forall \pi \in \mathsf{Outs}_G(s_{\mathsf{init}}, \lambda_1, \lambda_2), f(\pi) > \mu$$
(1)

$$\mathbb{E}_{s_{\text{init}}}^{G[\lambda_1,\lambda_2^{\text{stoch}}]}(f) > \nu \tag{2}$$

and the BWC synthesis problem asks to synthesize such a strategy if one exists.

Beyond worst-case synthesis

Formal definition

Given

•
$$G=(\mathcal{G},S_1,S_2),\ s_{ ext{init}}\in S$$
,

- a finite-memory stochastic model $\lambda_2^{\text{stoch}} \in \Lambda_2^F$ of the adversary,
- a measurable value function $f : Plays(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$, and two thresholds $\mu, \nu \in \mathbb{Q}$,

the beyond worst-case (BWC) problem asks to decide if \mathcal{P}_1 has a finite-memory strategy $\lambda_1 \in \Lambda_1^F$ such that

$$\forall \lambda_2 \in \Lambda_2, \forall \pi \in \mathsf{Outs}_G(s_{\mathsf{init}}, \lambda_1, \lambda_2), f(\pi) > \mu$$
(1)

$$\mathbb{E}_{\text{sinit}}^{G[\lambda_1, \lambda_2^{\text{stoch}}]}(f) > \nu \tag{2}$$

and the BWC synthesis problem asks to synthesize such a strategy if one exists.

Notice the highlighted parts

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion
000000000	00000000	00	0000	000

Related work

Common philosophy: avoiding outlier outcomes

1 Our strategies are *strongly risk averse*

▷ avoid risk at all costs and optimize among safe strategies

Related work

Common philosophy: avoiding outlier outcomes

- **1** Our strategies are *strongly risk averse*
 - $\,\triangleright\,$ avoid risk at all costs and optimize among safe strategies
- 2 Other notions of risk ensure low probability of risked behavior [WL99, FKR95]
 - ▷ without worst-case guarantee
 - ▷ without good expectation

Related work

Common philosophy: avoiding outlier outcomes

- 1 Our strategies are *strongly risk averse*
 - $\,\triangleright\,$ avoid risk at all costs and optimize among safe strategies
- Other notions of risk ensure low probability of risked behavior [WL99, FKR95]
 - ▷ without worst-case guarantee
 - ▷ without good expectation
- 3 Trade-off between expectation and variance [BCFK13, MT11]
 - > statistical measure of the stability of the performance
 - no strict guarantee on individual outcomes
Mean-payoff value function

	worst-case	expected value	BWC
complexity	$NP\capcoNP$	Р	$NP\capcoNP$
memory	memoryless	memoryless	pseudo-polynomial

▷ Additional modeling power for free

Philosophy of the algorithm

- Classical worst-case and expected value results and algorithms as *nuts and bolts*
- Screw them together in an adequate way

Philosophy of the algorithm

- Classical worst-case and expected value results and algorithms as *nuts and bolts*
- ▷ Screw them together in an adequate way

Three key ideas

- To characterize the expected value, look at *end-components* (ECs)
- 2 Winning ECs vs. losing ECs: the latter must be avoided to preserve the worst-case requirement
- 3 Inside a WEC, we have an interesting way to play...

Philosophy of the algorithm

- Classical worst-case and expected value results and algorithms as *nuts and bolts*
- ▷ Screw them together in an adequate way

Three key ideas

- To characterize the expected value, look at *end-components* (ECs)
- 2 Winning ECs vs. losing ECs: the latter must be avoided to preserve the worst-case requirement
- **3** Inside a WEC, we have an interesting way to play...
- \implies Let's focus on a WEC

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion 000

Inside a WEC

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion 000

Inside a WEC

Game interpretation

- \triangleright Worst-case threshold is $\mu = 0$
- ▷ **All** states are winning: memoryless optimal worst-case strategy $\lambda_1^{wc} \in \Lambda_1^{PM}(G)$, ensuring $\mu^* = 1 > 0$

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion 000

Inside a WEC

Game interpretation

- \triangleright Worst-case threshold is $\mu = 0$
- ▷ **All** states are winning: memoryless optimal worst-case strategy $\lambda_1^{wc} \in \Lambda_1^{PM}(G)$, ensuring $\mu^* = 1 > 0$

MDP interpretation

▷ Memoryless optimal expected value strategy $\lambda_1^e \in \Lambda_1^{PM}(P)$ achieves $\nu^* = 2$

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion
000000000	0000000000	00	0000	000

A cornerstone of our approach

BWC problem: what kind of thresholds $(\mu = 0, \nu)$ can we achieve?

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion
000000000	0000000000	00	0000	000

A cornerstone of our approach

BWC problem: what kind of thresholds $(\mu = 0, \nu)$ can we achieve?

Key result

For all $\varepsilon > 0$, there exists a finite-memory strategy of \mathcal{P}_1 that satisfies the BWC problem for the thresholds pair $(0, \nu^* - \varepsilon)$.

▷ We can be arbitrarily close to the optimal expectation while ensuring the worst-case

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion
000000000	000000000	00	0000	000

Combined strategy

Outcomes of the form

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion
000000000	000000000	00	0000	000

Combined strategy

Outcomes of the form

 $\mathbb{E} = \nu^* = 2$

Synthesis in Multi-Criteria Quantitative Games

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion 000

Combined strategy

$Outcomes \ of \ the \ form$

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion 000

Shortest path

- Strictly positive integer weights, $w: E \to \mathbb{N}_0$
- $\blacksquare \ \mathcal{P}_1$ wants to minimize its total cost up to target
 - ▷ inequalities are reversed

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion

Shortest path

- Strictly positive integer weights, $w \colon E \to \mathbb{N}_0$
- \mathcal{P}_1 wants to minimize its total cost up to target
 - ▷ inequalities are reversed

	worst-case	expected value	BWC
complexity	Р	Р	pseudo-poly. / NP-hard
memory	memoryless	memoryless	pseudo-poly.

- ▷ Problem **inherently harder** than worst-case and expectation.
- \triangleright NP-hardness by K^{th} largest subset problem [JK78, GJ79]

Key difference with MP case

Useful observation

The set of all worst-case winning strategies for the shortest path can be represented through a finite game.

Sequential approach solving the BWC problem:

- 1 represent all WC winning strategies,
- 2 optimize the expected value within those strategies.

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion
000000000	00000000	00	0000	000

1 Synthesis in Quantitative Games

2 Beyond Worst-Case Synthesis

3 Multi-Dimension Objectives

4 Window Objectives

5 Conclusion and Future Work

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion
000000000	00000000	•0	0000	000

		EG	<u>MP</u>	MP	<u>TP</u>	ΤP	
	complexity	$NP\capcoNP$					
one-dim.	\mathcal{P}_1 mem.						
	\mathcal{P}_2 mem.	pure memoryless					
	complexity	coNP	coNP-c.		?	?	
<i>k</i> -dim.	\mathcal{P}_1 mem.	pure finite pure infinite		2	2		
	\mathcal{P}_2 mem.	pui		:			

▷ Natural extension

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion
000000000	00000000	•0	0000	000

		EG	<u>MP</u>	MP	<u>TP</u>	ΤP	
	complexity	$NP\capcoNP$					
one-dim.	\mathcal{P}_1 mem.	pure memoryless					
	\mathcal{P}_2 mem.						
	complexity	coNP-c.		$NP\capcoNP$?	?	
<i>k</i> -dim.	\mathcal{P}_1 mem.	pure finite pure infinite		e infinite	2	2	
	\mathcal{P}_2 mem.	pure memoryless			:		

▷ Natural extension, increased complexity.

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion
000000000	00000000	•0	0000	000

		EG	<u>MP</u>	MP	<u>TP</u>	ΤP	
	complexity	$NP\capcoNP$					
one-dim.	\mathcal{P}_1 mem.						
	\mathcal{P}_2 mem.	pure memoryless					
	complexity	coNP-c.		$NP\capcoNP$?	?	
<i>k</i> -dim.	\mathcal{P}_1 mem.	pure finite pure infinite		2	2		
	\mathcal{P}_2 mem.	pure memoryless			•	•	

▷ Natural extension, increased complexity.

▷ **Question**: what about TP?

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion
000000000	00000000	•0	0000	000

		EG	<u>MP</u>	MP	<u>TP</u>	TP	
	complexity	$NP\capcoNP$					
one-dim.	\mathcal{P}_1 mem.	em.					
	\mathcal{P}_2 mem.	pure memoryless					
	complexity	coNP	coNP-c.		und	lec.	
<i>k</i> -dim.	\mathcal{P}_1 mem.	pure finite pure infinite		e infinite			
	\mathcal{P}_2 mem.	pur		-			

Theorem

Total-payoff games are **undecidable** for $k \ge 5$.

- ▷ Reduction from the halting problem in 2CMs.
- \triangleright Open for k = 2, 3 and 4.

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion
000000000	00000000	•0	0000	000

		EG	<u>MP</u>	MP	<u>TP</u>	TP	
	complexity	$NP\capcoNP$					
one-dim.	\mathcal{P}_1 mem.	pure memoryless					
	\mathcal{P}_2 mem.						
	complexity	coNP	coNP-c.		und	lec.	
<i>k</i> -dim.	\mathcal{P}_1 mem.	pure finite pure infinite		e infinite		_	
	\mathcal{P}_2 mem.	pure memoryless			_		

▷ We want **finite-memory** controllers.

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion
000000000	00000000	•0	0000	000

		EG	MP	<u>TP</u>	TP	
	complexity	$NP\capcoNP$				
one-dim.	\mathcal{P}_1 mem.					
	\mathcal{P}_2 mem.	pure memoryless				
	complexity	coN	IP-c.	undec.		
<i>k</i> -dim.	\mathcal{P}_1 mem.	pure	finite		_	
	\mathcal{P}_2 mem.	pure me	emoryless	-		

- ▷ We want **finite-memory** controllers.
- \triangleright Restrict \mathcal{P}_1 to finite-memory strategies.

Lemma [CDHR10, VCD⁺12]

The answer to the worst-case mean-payoff threshold problem is $\rm YES$ iff the answer to the unknown initial credit problem is $\rm YES$.

Synthesis in Multi-Criteria Quantitative Games

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion
000000000	00000000	•0	0000	000

		EG	MP	<u>TP</u>	ΤP	
	complexity	NP ∩ coNP				
one-dim.	\mathcal{P}_1 mem.					
	\mathcal{P}_2 mem.	pure memoryless				
<i>k</i> -dim.	complexity	coN	IP-c.	undec.		
	\mathcal{P}_1 mem.	pure	finite			
	\mathcal{P}_2 mem.	pure me	emoryless	ss -		

Question: precise memory bounds?

exponential memory sufficient and necessary

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion
000000000	00000000	•0	0000	000

		EG	MP	<u>TP</u>	TP	
	complexity	NP ∩ coNP				
one-dim.	\mathcal{P}_1 mem.					
	\mathcal{P}_2 mem.	pure memoryless				
<i>k</i> -dim.	complexity	coN	IP-c.	undec.		
	\mathcal{P}_1 mem.	pure	finite			
	\mathcal{P}_2 mem.	pure me	memoryless			

- **Question**: precise memory bounds?
 - exponential memory sufficient and necessary
- Question: efficient synthesis algorithm?
 - EXPTIME algorithm
 - ▷ symbolic and incremental

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion
000000000	00000000	•0	0000	000

		EG	MP	<u>TP</u>	ΤP		
	complexity	$NP\capcoNP$					
one-dim.	\mathcal{P}_1 mem.	nure memoryless					
	\mathcal{P}_2 mem.						
<i>k-</i> dim.	complexity	coN	IP-c.	undec.			
	\mathcal{P}_1 mem.	pure	finite				
	\mathcal{P}_2 mem.	pure me	emoryless		-		

- Question: precise memory bounds?
 - exponential memory sufficient and necessary
- Question: efficient synthesis algorithm?
 - EXPTIME algorithm
 - symbolic and incremental
- Results for EG / MP + parity.

Trading finite memory for randomness

Question: when and how can \mathcal{P}_1 trade his pure finite-memory strategy for an equally powerful randomized memoryless one?

▷ relax to *almost-sure* semantics

	Multi energy and energy parity	Multi MP (parity)	MP parity
one-player	×	\checkmark	\checkmark
two-player	×	×	\checkmark

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion
000000000	00000000	00	0000	000

1 Synthesis in Quantitative Games

2 Beyond Worst-Case Synthesis

3 Multi-Dimension Objectives

4 Window Objectives

5 Conclusion and Future Work

Why an alternative to MP/TP?

- No known polynomial-time algorithm in one-dimension.
- TP is undecidable in multi-dimension.
- No timing guarantee
 - \triangleright long-run behavior vs. time frames.

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion
000000000	00000000	00	0000	000

Window objectives: key idea

- Window of fixed size sliding along a play → defines a local finite horizon.
- Objective: see a **local** *MP* ≥ 0 *before hitting the end* of the window

 \sim needs to be verified at *every* step.

▷ Intuition: local deviations from the threshold must be compensated in a parametrized # of steps.

Synthesis in Multi-Criteria Quantitative Games

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion
0000000000	000000000	00	0000	000

Multiple variants

- Maximal window size fixed or quantified existentially (Bounded Window)
- \triangleright Prefix-independent or not

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion
000000000	00000000	00	0000	000

Multiple variants

- Maximal window size fixed or quantified existentially (Bounded Window)
- Prefix-independent or not

Conservative approximations in one-dim.

Any window obj. \Rightarrow **BW** \Rightarrow MP \ge 0 **BW** \Leftarrow MP > 0

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion
0000000000	00000000	00	0000	000

Results overview

		one-dimension		k-dimension		
	complexity	\mathcal{P}_1 mem.	P_2 mem.	complexity	\mathcal{P}_1 mem.	P_2 mem.
<u>MP</u> / <u>MP</u>	$NP \cap coNP$	mem	1-less	coNP-c. / NP ∩ coNP	infinite	mem-less
<u>TP</u> / TP	$NP \cap coNP$	mem-less		undec.	-	-
WMP: fixed	De	P-c. mem. req.		PSPACE-h.		
polynomial window	F-L.			EXP-easy	ovnon	ontial
WMP: fixed	D(SVI)	$\leq \text{linear}($	$\leq \text{linear}(S \cdot I_{\text{max}})$		exponential	
arbitrary window	$P(3 , \mathbf{v}, \mathbf{i}_{max})$			LAF-C.		
WMP: bounded		mom loss	infinito			
window problem		inent-less	minute	NF K-II.	-	-

|S| the # of states, V the length of the binary encoding of weights, and I_{max} the window size.

Results overview: advantages

		one-dimension		k-dimension				
	complexity	\mathcal{P}_1 mem.	P_2 mem.	complexity	\mathcal{P}_1 mem.	P_2 mem.		
<u>MP</u> / <u>MP</u>	$NP \cap coNP$	merr	i-less	coNP-c. / NP \cap coNP	infinite	mem-less		
<u>TP</u> / TP	$NP \cap coNP$	mem-less		undec.	-	-		
WMP: fixed	D c			PSPACE-h.				
polynomial window	P-C.	$\begin{array}{l} {\sf mem. req.} \\ \leq {\sf linear}(S \cdot {\it l_{\sf max}}) \end{array}$		mem. req.		EXPTIME-easy	ovnon	ontial
WMP: fixed					expon	entia		
arbitrary window	$\Gamma(\mathcal{I} , v, max)$			EXPTINE-C.				
WMP: bounded		mom loss	infinito					
window problem		ment-less	minite	INF K-II.	-	-		

|S| the # of states, V the length of the binary encoding of weights, and I_{max} the window size.

- \triangleright For one-dim. games with poly. windows, we are in **P**.
- ▷ For multi-dim. games with fixed windows, we are **decidable**.
- ▷ Window obj. provide timing guarantees.

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion
000000000	00000000	00	0000	000

1 Synthesis in Quantitative Games

- 2 Beyond Worst-Case Synthesis
- 3 Multi-Dimension Objectives
- 4 Window Objectives
- 5 Conclusion and Future Work

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion
000000000	00000000	00	0000	● 00

Summary

Study of *multi-criteria* quantitative games.

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion ●00

Summary

Study of *multi-criteria* quantitative games.

1 Beyond worst-case synthesis

- ▷ worst-case and expected value
- ▷ additional modeling power for free in MP case
- \triangleright complexity leap for SP
| Quantitative Games | Beyond Worst-Case Synthesis | Multi-Dimension Objectives | Window Objectives | Conclusion
●00 |
|--------------------|-----------------------------|----------------------------|-------------------|-------------------|
| | | | | |

Summary

Study of *multi-criteria* quantitative games.

1 Beyond worst-case synthesis

- ▷ worst-case and expected value
- ▷ additional modeling power for free in MP case
- \triangleright complexity leap for SP

2 Multi-dimension TP, MP and EG + parity

- ▷ undecidability of TP
- \triangleright tight memory bounds for MP and EG + parity
- ▷ optimal synthesis algorithm
- ▷ memory vs. randomness

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion ●00

Summary

Study of *multi-criteria* quantitative games.

1 Beyond worst-case synthesis

- ▷ worst-case and expected value
- ▷ additional modeling power for free in MP case
- ▷ complexity leap for SP

2 Multi-dimension TP, MP and EG + parity

- ▷ undecidability of TP
- \triangleright tight memory bounds for MP and EG + parity
- ▷ optimal synthesis algorithm
- ▷ memory vs. randomness

3 Window objectives

- ▷ timing guarantees
- ▷ improved tractability

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion
000000000	00000000	00	0000	000

Future work

Beyond worst-case extensions

- ▷ more general games (e.g., stochastic games)
- > multi-dimension
- ▷ percentile performances

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion
000000000	00000000	00	0000	000

Future work

Beyond worst-case extensions

- ▷ more general games (e.g., stochastic games)
- multi-dimension
- ▷ percentile performances

Mixed objectives

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion
000000000	00000000	00	0000	000

Future work

Beyond worst-case extensions

- ▷ more general games (e.g., stochastic games)
- multi-dimension
- percentile performances

Mixed objectives

Window objectives

- stochastic context
- ▷ synchronous closing
- ▷ (finitary) parity [CHH09]

Quantitative Games	Beyond Worst-Case Synthesis	Multi-Dimension Objectives	Window Objectives	Conclusion

Thanks!

To my advisors, Véronique Bruyère and Jean-François Raskin,

to my other co-authors, Krishnendu Chatterjee, Laurent Doyen and Emmanuel Filiot,

and to you, members of the jury, for your precious time!

References I

Tomás Brázdil, Krishnendu Chatterjee, Vojtech Forejt, and Antonín Kucera. Trading performance for stability in Markov decision processes. In LICS, pages 331–340. IEEE Computer Society, 2013.

Véronique Bruyère, Emmanuel Filiot, Mickael Randour, and Jean-François Raskin.

Expectations or guarantees? i want it all! a crossroad between games and mdps. In Fabio Mogavero, Aniello Murano, and Moshe Y. Vardi, editors, Proceedings 2nd International Workshop on Strategic Reasoning, Grenoble, France, April 5-6, 2014, volume 146 of Electronic Proceedings in Theoretical Computer Science, pages 1–8. Open Publishing Association, 2014.

Véronique Bruyère, Emmanuel Filiot, Mickael Randour, and Jean-François Raskin.

Meet Your Expectations With Guarantees: Beyond Worst-Case Synthesis in Quantitative Games. In Ernst W. Mayr and Natacha Portier, editors, 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014), volume 25 of Leibniz International Proceedings in Informatics (LIPIcs), pages 199–213, Dagstuhl, Germany, 2014. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, and Jean-François Raskin.

Generalized mean-payoff and energy games.

In Kamal Lodaya and Meena Mahajan, editors, <u>FSTTCS</u>, volume 8 of <u>LIPIcs</u>, pages 505–516. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

Krishnendu Chatterjee, Laurent Doyen, Mickael Randour, and Jean-François Raskin.

Looking at mean-payoff and total-payoff through windows. In Dang Van Hung and Mizuhito Ogawa, editors, <u>ATVA</u>, volume 8172 of <u>Lecture Notes in Computer</u> Science, pages 118–132. Springer, 2013.

References II

12			

Krishnendu Chatteriee, Thomas A. Henzinger, and Florian Horn. Finitary winning in omega-regular games. ACM Trans. Comput. Log., 11(1), 2009. Krishnendu Chatterjee, Mickael Randour, and Jean-François Raskin. Strategy synthesis for multi-dimensional quantitative objectives. In Maciej Koutny and Irek Ulidowski, editors, CONCUR, volume 7454 of Lecture Notes in Computer Science, pages 115-131. Springer, 2012. Krishnendu Chatterjee, Mickael Randour, and Jean-François Raskin.

Strategy synthesis for multi-dimensional quantitative objectives. Acta Informatica, 2013. 35 pages.

Jerzy A. Filar, Dmitry Krass, and Kirsten W. Ross.

Percentile performance criteria for limiting average Markov decision processes. Transactions on Automatic Control, 40(1):2-10, 1995.

Michael R. Garev and David S. Johnson.

Computers and intractability: a guide to the Theory of NP-Completeness. Freeman New York, 1979.

Peter W. Glynn and Dirk Ormoneit.

Hoeffding's inequality for uniformly ergodic Markov chains. Statistics & Probability Letters, 56(2):143-146, 2002.

References III

Donald B. Johnson and Samuel D. Kashdan. Lower bounds for selection in X + Y and other multisets. Journal of the ACM, 25(4):556–570, 1978.

Shie Mannor and John N. Tsitsiklis.

Mean-variance optimization in Markov decision processes. In Lise Getoor and Tobias Scheffer, editors, ICML, pages 177–184. Omnipress, 2011.

Mickael Randour.

Automated synthesis of reliable and efficient systems through game theory: A case study. In Thomas Gilbert, Markus Kirklionis, and Gregoire Nicolis, editors, Proceedings of the European Conference on Complex Systems 2012, Springer Proceedings in Complexity, pages 731–738. Springer, 2013.

Mathieu Tracol.

Fast convergence to state-action frequency polytopes for MDPs. Oper. Res. Lett., 37(2):123–126, 2009.

Yaron Velner, Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, Alexander Rabinovich, and

Jean-François Raskin.

The complexity of multi-mean-payoff and multi-energy games. CoRR, abs/1209.3234, 2012.

Congbin Wu and Yuanlie Lin.

Minimizing risk models in Markov decision processes with policies depending on target values. Journal of Mathematical Analysis and Applications, 231(1):47–67, 1999.