
Chasing the Best Büchi Automata for Nested
Depth-first Search Based Model Checking

Frantǐsek Blahoudek∗

Faculty of Informatics
Masaryk University

Brno, Czech Republic
xblahoud@fi.muni.cz

Abstract
The automata-based model checking uses a translation of formulae in Linear Temporal

Logic (LTL) into Büchi automata (BA). The performance of the model checkers can be
heavily influenced by the BA used. In this paper we discuss several heuristics commonly
used to decide which BA should be used for given verification task, suggest a novel heuristic
for this problem and finally evaluate the heuristics using common LTL-to-BA translators,
model checker Spin and benchmark of real verification tasks. Our evaluation shows that
heuristics based only on number of states of BA or the degree of determinism often give
wrong answer or are unable to answer. On a concrete example we further demonstrate our
suggestion to exploit some partial knowledge about systems to improve our heuristic.

1 Introduction

In the automata-theoretic approach to explicit model checking of Linear-time Temporal Logic
(LTL) [14] the specification given as LTL formula ϕ is first negated into ¬ϕ, which is then
translated into a Büchi automaton (BA) A¬ϕ that accepts all the executions of the system
violating ϕ; the model checker then constructs the synchronous product S⊗A¬ϕ, where S is the
state space (automaton) for the system to be verified. The product is then checked for emptiness.
If the language of S⊗A¬ϕ is non-empty, the witness of non-emptiness is the execution of S that
invalidates ϕ, so called the counterexample. If the language of S ⊗A¬ϕ is empty, the system
satisfies the specification ϕ.

There are many LTL-to-BA translators and they often produce different automata for the
same formula. For example, Figure 1 shows five automata for the LTL formula ¬(GFa→ GFb)
produced by different translators. In this paper we discuss different methods to decide which
one of them should be used for the model checking to be efficient.

Usually both the state space S and the product S ⊗A¬ϕ are built on-the-fly and only the
part needed by the emptiness check is built. There are several emptiness check procedures used
in different model checkers. We decided to study the performance of widely used, open-source
model checker Spin which uses a sequential emptiness check based on Nested Depth-First Search
(NDFS) [9].

The choice of automaton used as A¬ϕ can influence both the size of S⊗A¬ϕ and the empti-
ness check procedure. Among other aspects the choice of BA influences which part of S⊗A¬ϕ is

∗The author has been supported by The Czech Science Foundation, grant GBP202/12/G061.



2 F. Blahoudek

s0

s1

s2

(B1) LTL2BA

>

b̄
ab̄

b̄ab̄

b̄

si

s0

s1

s2

s3

(B2) MoDeLLa

>

b̄

>

b̄

āb̄

ab̄b̄

b̄

s0

s1

s2

(B3) LTL3BA

>

b̄

ab̄

b̄ab̄

b̄

si

s0

s1

s2

(B4) LTL3BA (det)

> >

b̄
ab̄

āb̄ab̄

āb̄

s0

s1

s2

(B5) Spot

>

ab̄

ab̄

āb̄ab̄

āb̄

Figure 1: Automata for the formula ¬(GFa→GFb). Note that edges in the automata are labelled
by Boolean formulae over atomic propositions, where ā means ¬a, > stands for true, and ab̄ used
later means a∧¬b. Formally, an edge labelled with a formula ρ represents all the transitions
that are labelled with a subset M of atomic propositions such that M |= ρ.

built in case the product contains some accepting cycle (counterexample). Namely, small change
of order of transitions used in the file describing A¬ϕ can have tremendous impact on running
time of Spin. Similarly to [6] we did not find any conclusion about “good order”. Therefore we
address here only cases without counterexample, where the whole product has to be built and
explored by the NDFS.

We assume the reader is familiar with LTL and Büchi automata.

2 Benchmarking Büchi Automata

The authors of LTL-to-BA translators try to minimize the size [2, 5, 12, 7, 13] and/or the degree
of determinism of the automata produced [1, 11, 3]. We can use these values as heuristics to
answer the following question: Which of two given automata A1,A2 should be used as A¬ϕ for
the model checking to be faster? A benchmark of LTL-to-BA translators belongs usually to one
of the following categories:

Size: The size of an automaton is usually understood as the number of states (states(A)), or
the number of transitions (trans(A)).

Determinism: The degree of determinism is measured by the number of non-deterministic
states (nd-states(A)). A drawback of this heuristic is a fact that it does not quantify how
non-deterministic these states are.

Products with random state spaces: Popular LTL-to-BA benchmarking tools like lbtt and
ltlcross (from Spot library) perform following steps for each automaton: (1) build prod-
ucts with a fixed set of random state spaces, (2) sum their sizes, and (3) compare the
results. This approach gives results depending on the random state spaces used.

2.1 Proposed heuristic

Figure 1 shows five Büchi automata generated by some of available LTL-to-BA translators for
the formula ¬(GFa→GFb). The automata B1 and B3 have the same number of states, transitions
and non-deterministic states, but as Table 1 indicates, the amount of work performed by Spin



Chasing the Best BA for NDFS Based Model Checking 3

Table 1: Statistics about generated automata and Spin’s run on the empty product between
model peterson.4.pm and formula ¬(GFa→ GFb). The corresponding automata are shown in
Fig. 1.

automaton size statistics from Spin’s execution

states ndst edges trans stored states visited trans time

B1 LTL2BA 3 3 6 12 1577440 7684k 5.95s
B2 MoDeLLa 5 2 8 18 1580893 7670k 6.13s
B3 LTL3BA 3 3 6 12 2299250 15583k 12.10s
B4 LTL3BA (det) 4 1 7 14 2297625 15561k 12.00s
B5 Spot 3 1 6 9 848641 2853k 2.26s

measured in the number of visited transitions (and also the running time) differs substantially
for B1 and B3. This illustrates that the size and determinism of automata are not always a
relevant factor in the performance of the model checking process of Spin. For this reason we
have designed heuristics based on a product with universal model.

∅

{a} {a,b}

{b}

ab̄

āb̄

ab̄

āb

ab̄ ab

āb̄ āb

āb̄

ab
ab

āb

āb̄

ab̄

āb

ab

Figure 2: The universal model U{a,b}.

The universal model for a set of atomic propositions
AP is an automaton UAP = (2AP , δ,∅), where states
are formed by combinations of atomic propositions and
(q,α,α) ∈ δ for each q,α ∈ 2AP . See Figure 2 for the
universal model with two atomic propositions.

We improved the heuristic based on observation that
the automata B2 and B4 contain redundant initial states
si which can appear only once in any product. These
states will not make any significant difference to the
product size. In particular, only states that are reach-
able from some cycle can make a significant increase in the number of states of S⊗A¬ϕ. Based
on this observation we trim the product with UAP to filter away redundant states. Henceforth
we refer to the trimmed product as T .

The number of states of T for the automata B1,B2,B3,B4, and B5 of Figure 1 are 7, 9, 8, 7,
and 6 respectively. So this information helps us to distinguish between B1 and B3, moreover, it
gives preference to B4 over B3 thanks to this trimming.

3 Heuristics Benchmark

In this section, we present a comparison of the heuristic proposed in the previous section, with
the heuristics based on the size or determinism of automata. We examine how well they can
estimate which of two given automata yields less work for Spin when no counterexample is found.
We use the following software, hardware, benchmark and heuristics.

Software. We use the five LTL-to-BA translators listed in Table 2. Apart from the popular
translators, Spin and LTL2BA, we use MoDeLLa which was the first tool focusing on deter-
minism, as well as LTL3BA and Spot which represent state-of-the-art translators. The last two
translators are used in several settings: the settings denoted by LTL3BA (det) aim to produce
more deterministic automata, while the setting called Spot (no jump) is an experimental setting



4 F. Blahoudek

Table 2: Reference of considered LTL-to-BA translators.

tool version translation command

Spin [4, 8] 6.2.5 spin -f
LTL2BA [5] 1.1 ltl2ba -f
MoDeLLa [11] 1.5.9 modella -s -g -r12 ltlfile
LTL3BA [1] 1.0.2 ltl3ba -S -f
LTL3BA (det) ltl3ba -S -M -f
Spot [3] 1.2.4 ltl2tgba -s
Spot (no jump) ltl2tgba -s -x degen-lskip=0

which produces automata with longer cycles than usual. For model checking of the tasks we
used Spin with its default settings and the maximum depth of search set to 100 000 000.

Hardware. All computations were performed on an HP DL980 G7 server with 8 eight-core
64-bit processors Intel Xeon X7560 2.26GHz and 448 GiB DDR3 RAM. Each execution of Spin
was restricted to a 30 minute time-out and a memory limit of 20GiB.

Benchmark. The benchmark set of models and formulae is based on real model checking
tasks BEEM [10]. In addition to the original 735 pairs of a model in Promela and an LTL formula,
we added two formulae to each instance of mutual exclusion protocols anderson, bakery, and
peterson (altogether 22 instances):

1. GF(P0@CS)→ GF(P0@NCS) meaning that if a process P0 spends infinite number of steps
in a critical section, then it also spends infinite number of steps in a non-critical section,

2. FG¬
(
(P0@CS∧P1@CS)∨(P0@CS∧P2@CS)∨(P1@CS∧P2@CS)

)
meaning that after finite

number of steps, it never happens that two of the processes P0, P1, and P2 are in a critical
section at the same time.

We removed pairs where the formula contains the reserved keyword of Promela active in
a name of some atomic proposition, because Spin fails to run these tasks (12 pairs), we also
removed pairs where for at least one translator Spin timeouted or ran out of memory (11 pairs).
We further removed all the pairs where some counterexample was found (674 pairs). This left
us with 735 + 2 ·22−12−11−674 = 82 verification tasks without any counterexamples.

Each of the 82 verification tasks without counterexample was verified by Spin using LTL-to-
BA translators of Table 2. The triplet (model,formula,translator) is called Spin instance. We
gathered the statistics about automata and product with the universal model using ltlcross
and also information about the number of transitions visited by Spin (Spin-trans) for each Spin
instance.

To focus on only relevant differences in Spin performance, we selected for each verification
task only the pairs of Spin instances (I1, I2), where the difference between Spin-trans(I1) and
Spin-trans(I2) was at least 20% of the smaller value. We call such pairs of Spin instances
matches. We ended up with 603 matches.

Heurisitics. We used several heuristics based on automata (A) statistics: states(A) answers
that out of two BA the one with lower number of states should be preferred and if the numbers
are equal, it returns no answer, trans(A) is based on the number of transitions, nd-states(A) is



Chasing the Best BA for NDFS Based Model Checking 5

heuristic correct incorrect no answer score
states(T ); states(A) 495 57 51 438
states(T ); trans(A) 511 84 8 427
states(A); states(T ) 489 63 51 426
states(T ) 471 48 84 423
trans(T ) 495 83 25 412
states(T ); trans(T ) 495 91 17 404
states(A); nd-states(A) 487 90 26 397
trans(A) 459 93 51 366
states(A); trans(A) 456 96 51 360
states(A) 371 39 193 332
nd-states(A) 316 75 212 241

Table 3: Comparison of ten chosen heuristics on selected matches. The maximum possible score
was 603.

based on the number of non-deterministic states. We also used heuristics based on the trimmed
product with universal model (T ). The combination of two heuristics, for example states(A);
trans(A), proceeds as follows: Answer as the first heuristic (states(A)) if it gives some answer;
if the first heuristic gives no answer, use the result of the second heuristic (trans(A)).

3.1 Results

For each of the selected matches we compared the values of Spin-trans and then asked heuristics
to give its opinion which automaton should be preferred. The numbers of correct, incorrect and
no answers have been accumulated for each heuristic and based on these values the score was
computed as correct−incorrect. The obtained results can be found in Table 3, sorted by score.

Table 3 shows that states(T ) outperforms states(A) when compared by score, on the other
hand, states(A) gives the smallest number of wrong answers. A natural combination of these
two gives the best results.

4 Using Partial Knowledge about System

We can improve our proposed heuristic by adding some knowledge we have about the system
to be verified. For example, from the Promela description of the system peterson.4.pm we can
derive following information: (1) Both atomic propositions a and b mean that the process P0
is in some location, hence a and b can never hold together; (2) There are five locations in the
model, so we can assume that states without a are four times more frequent in the model than
states with a (the same applies to b). We can modify the universal model accordingly to (1) by
deleting state {a,b} and accordingly to (2) by adding two copies of the state ∅.

The numbers of states of the trimmed product with the universal model modified as suggested
for the automata B1−B5 are 11, 14, 13, 12, and 9 respectively. A heuristic based on these values
would be, for the particular example of Table 1, the most precise from all heuristics presented
here. To be more specific, the heuristic would give answer for all matches, and the answer will
be incorrect in only 3 out of 10 cases.



6 F. Blahoudek

Algorithms for automatic extraction of useful information about model which could improve
our heuristics are subject of future research, as well as new heuristics that can improve the
prediction of the most suitable BA for given task and thus save time spent on verification.

References
[1] Tomáš Babiak, Mojmı́r Křet́ınský, Vojtěch Řeehák, and Jan Strejček. LTL to Büchi automata

translation: Fast and more deterministic. In Proc. of the 18th Int. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’12), volume 7214 of LNCS, pages 95–109.
Springer, 2012.

[2] Jean-Michel Couvreur. On-the-fly verification of temporal logic. In Jeannette M. Wing, Jim Wood-
cock, and Jim Davies, editors, Proceedings of the World Congress on Formal Methods in the Devel-
opment of Computing Systems (FM’99), volume 1708 of LNCS, pages 253–271, Toulouse, France,
September 1999. Springer-Verlag.

[3] Alexandre Duret-Lutz. LTL translation improvements in Spot 1.0. International Journal on Critical
Computer-Based Systems, 5(1/2):31–54, March 2014.

[4] K. Etessami and G. J. Holzmann. Optimizing Büchi Automata. In CONCUR’00, volume 1877 of
LNCS, pages 153–167. Springer, 2000.

[5] Paul Gastin and Denis Oddoux. Fast LTL to Büchi automata translation. In G. Berry, H. Comon, and
A. Finkel, editors, Proceedings of the 13th International Conference on Computer Aided Verification
(CAV’01), volume 2102 of LNCS, pages 53–65, Paris, France, 2001. Springer-Verlag.

[6] Jaco Geldenhuys and Antti Valmari. More efficient on-the-fly LTL verification with Tarjan’s algo-
rithm. Theoretical Computer Science, 345(1):60–82, November 2005.

[7] Dimitra Giannakopoulou and Flavio Lerda. From states to transitions: Improving translation of LTL
formulæ to Büchi automata. In D.A. Peled and M.Y. Vardi, editors, Proceedings of the 22nd IFIP
WG 6.1 International Conference on Formal Techniques for Networked and Distributed Systems
(FORTE’02), volume 2529 of LNCS, pages 308–326, Houston, Texas, November 2002. Springer-
Verlag.

[8] Gerard J. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-Wesley,
2003.

[9] Gerard J. Holzmann, Doron A. Peled, and Mihalis Yannakakis. On nested depth first search. In
Jean-Charles Grégoire, Gerard J. Holzmann, and Doron A. Peled, editors, Proceedings of the 2nd
Spin Workshop (SPIN’96), volume 32 of DIMACS: Series in Discrete Mathematics and Theoretical
Computer Science. American Mathematical Society, May 1996.

[10] Radek Pelánek. BEEM: benchmarks for explicit model checkers. In Proceedings of the 14th in-
ternational SPIN conference on Model checking software (SPIN’07), volume 4595 of LNCS, pages
263–267. Springer-Verlag, 2007.

[11] Roberto Sebastiani and Stefano Tonetta. ”More deterministic” vs. ”smaller” Büchi automata for
efficient LTL model checking. In G. Goos, J. Hartmanis, and J. van Leeuwen, editors, Proceed-
ings of the 12th Advanced Research Working Conference on Correct Hardware Design and Verifica-
tion Methods (CHARME’03), volume 2860 of LNCS, pages 126–140, L’Aquila, Italy, October 2003.
Springer-Verlag.

[12] Fabio Somenzi and Roderick Bloem. Efficient Büchi automata for LTL formulæ. In Proceedings of
the 12th International Conference on Computer Aided Verification (CAV’00), volume 1855 of LNCS,
pages 247–263, Chicago, Illinois, USA, 2000. Springer-Verlag.

[13] Xavier Thirioux. Simple and efficient translation from LTL formulas to Büchi automata. In Rance
Cleaveland and Hubert Garavel, editors, Proceedings of the 7th International ERCIM Workshop in



Chasing the Best BA for NDFS Based Model Checking 7

Formal Methods for Industrial Critical Systems (FMICS’02), volume 66(2) of Electronic Notes in
Theoretical Computer Science, Málaga, Spain, July 2002. Elsevier.

[14] Moshe Y. Vardi. An automata-theoretic approach to linear temporal logic. In Faron Moller and
Graham M. Birtwistle, editors, Proceedings of the 8th Banff Higher Order Workshop (Banff’94),
volume 1043 of LNCS, pages 238–266, Banff, Alberta, Canada, 1996. Springer-Verlag.


	Introduction
	Benchmarking Büchi Automata
	Proposed heuristic

	Heuristics Benchmark
	Results

	Using Partial Knowledge about System

