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Abstract. In explicit model checking, systems are typically described in
an implicit and compact way. Some valid information about the system
can be easily derived directly from this description, for example that some
atomic propositions cannot be valid at the same time. The paper shows
several ways to apply this information to improve the Büchi automaton
built from an LTL specification. As a result, we get smaller automata
with shorter edge labels that are easier to understand and, more impor-
tantly, for which the explicit model checking process performs better.

1 Introduction

LTL model checking can be formulated as the problem of deciding whether a
given system has an erroneous behavior specified by an LTL formula ϕ. In the
automata-based approach to model checking, ϕ is translated into an equivalent
Büchi automaton Aϕ called property automaton. The original problem then re-
duces to deciding whether there exists a behavior of the system accepted by Aϕ.
In explicit model checking, this is achieved by building a synchronous product
of the system and the property automaton, and checking whether the product
contains any reachable accepting cycle. This emptiness check can be done by sev-
eral algorithms including the well-known Nested Depth-First Search (NDFS) [12]
implemented in the model checker Spin [11]. The synchronous product is often
constructed on-the-fly, i.e., simultaneously with the emptiness check and accord-
ing to its needs. The product construction and the emptiness check form typically
the most expensive part of the whole model checking process as the product to
be explored is often very large. The actual difficulty of the check depends not
only on the number of states in the product, but also on the number of transi-
tions, the number and positions of accepting states, and other characteristics of
the product. As the property automaton Aϕ is a component of the product, the
difficulty partly depends on the size and other characteristics of Aϕ.

For several decades, developers of algorithms and tools to translate LTL
formulas into Büchi automata have aimed to produce small automata in short
time. More recently, there was also a shift into producing automata that are
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more deterministic, as Sebastiani and Tonetta [16] identified a relation between
the performance of the model checking and the determinism of the property
automata. As a result, current LTL to Büchi automata translators like Spot [6]
and LTL3BA [2] produce relatively small automata that are often deterministic.

One way to create property automata that further accelerate the model check-
ing process is to provide more information for the translation than just the LTL
formula. For example, we have recently shown that the position of accepting
states in the property automaton can be adjusted according to the expected
result of the model checking process: if we expect that the system has no erro-
neous behavior specified by ϕ, we can move the accepting states of Aϕ further
from its initial state to accelerate the model checking [4]. Analogously, relocation
of accepting states in the opposite direction can speed up the model checking
process if the system contains an error specified by ϕ.

In this paper, we try to improve the property automata using partial infor-
mation about the behaviors of the system. More precisely, we use information
about combinations of atomic propositions (and their negations) that cannot
occur in any state of the system. For example, x = 5 and x > 10 cannot hold at
once. Similarly, a process cannot be in two different locations at the same time.
Information about these incompatible propositions can often be easily obtained
from an implicit description of the system, i.e., without building its state space.

We show that this a priori knowledge about incompatible propositions can
increase the efficiency of explicit model checking of linear-time properties by
refining the specification to be checked. In Section 3, we show how to perform
this refinement when the specification is given either by an LTL formula (or even
a PSL formula) or by a Büchi automaton (or other kind of an ω-automaton).
We talk about formula refinement or automaton refinement, respectively.

By refinement, we get a property automaton that may have fewer edges or
even fewer states than the initial property automaton. All these changes often
have a positive effect on the rest of the model checking process, as documented
by experimental evaluation in Section 4.

As a side effect of the specification refinement, we typically obtain automata
with long edge labels. Section 5 shows that complex edge labels have a small,
but measurable negative effect on the execution time of Spin. Fortunately, Sec-
tion 5 also introduces a method that employs the information about incompatible
propositions to simplify the labels.

Finally, Section 6 discusses some interesting cases discovered during our in-
tensive experiments.

2 Preliminaries

Let AP be a finite set of atomic propositions. Besides atomic propositions talking
about values of program variables (like x = 5 or y < 10) and their relations
(like x < y or x·y = z+2), we also work with atomic propositions of the form
p@loc saying that process p is in location loc.
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Let B = {>,⊥} represent Boolean values. An assignment is a function ` :
AP → B that valuates each proposition. BAP is the set of all assignments.

We assume familiarity with Linear-time Temporal Logic (LTL) [15]. Our
examples use mainly the temporal operators Fϕ (meaning that ϕ eventually
holds) and Gϕ (saying that ϕ always holds), but the results are valid for property
formulas of any linear-time logic including the linear fragment of PSL [1].

A Büchi automaton (BA or simply an automaton) is a tuple A = (Q, q0, δ, F ),
where Q is a finite set of states, q0 ∈ Q is the initial state, δ ⊆ Q×BAP ×Q is
a transition relation labeling each transition by an assignment, and F ⊆ Q is a
set of accepting states. Every triple (r1, `, r2) ∈ δ is called a transition from r1
to r2 under `. As an implementation optimization, and to simplify illustrations,
we often use edges labeled by Boolean formulas to group transitions with same
sources and destinations: an edge (r1, a∨¬b, r2) represents all transitions from r1
to r2 labeled with assignments ` such that `(a) = > or `(b) = ⊥. To shorten the
notation of edge labels, we write ā instead of ¬a and we omit ∧ in conjunctions
of atomic propositions (e.g., ab̄ stands for a ∧ ¬b). An infinite sequence π =
(r1, `1, r2)(r2, `2, r3) . . . ∈ δω where r1 = q0 is a run of A over the word `1`2 . . ..
The run is accepting if some accepting state appears infinitely often in π. A word
is accepted by A if there is an accepting run of A over that word. The language
of A is the set L(A) of all words accepted by A.

Kripke structures are a low-level formalism representing finite state systems.
A Kripke structure is a tuple S = (S, s0, R, L), where S is a finite set of states,
s0 ∈ S is the initial state, R ⊆ S×S is a transition relation, L : S → BAP is a la-
beling function. A product of a Kripke structure S = (S, s0, R, L) and an automa-
ton A = (Q, q0, δ, F ) is the automaton S⊗A defined as (S×Q, (s0, q0), δ′, S×F ),
where δ′ = {((s1, q1), l, (s2, q2)) | (s1, s2) ∈ R, (q1, l, q2) ∈ δ, L(s1) = l}.

3 Specification Refinement

Assume that we have a Kripke structure S and an LTL formula ϕ that describes
the infinite erroneous behaviors we do not want to see in S. Let AP(ϕ) denote the
set of atomic propositions in ϕ. A typical explicit model checker translates ϕ as a
Büchi automatonAϕ, and then constructs a product S⊗Aϕ while simultaneously
checking whether the language of this product is empty or not. As the product
accepts all behaviors of the system also accepted by the automaton Aϕ, the
system contains an error if and only if L(S ⊗Aϕ) 6= ∅.

In practice, the system S is often described in some high-level formalism,
which can be a programming language or a dedicated modeling language like
Promela [11, Ch. 3]. This high-level description is translated into (the relevant
part of) the corresponding Kripke structure during construction of the product.

The high-level description already provides some relevant information about
the system. In particular, one can detect that some combinations of propositions
in AP(ϕ) and their negations are never valid at the same time. For instance,
x > 10, y < 5, and x < y cannot hold together. This information follows directly
from the atomic propositions themselves. However, a static analysis of the system
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can identify more impossible combinations. For instance, the analysis can find
out that if a process p is in a location loc, then local variable p:x has value 0, and
thus atomic propositions p@loc and p:x > 0 never hold together. In the following,
we assume that we are given a constraint κ, which is a Boolean formula over
AP(ϕ) satisfied by all combinations of atomic propositions except the invalid
combinations. For example, the constraints corresponding to the two instances
mentioned above are ¬((x > 10)∧ (y < 5)∧ (x < y)) and ¬((p@loc)∧ (p:x > 0)).

One can frequently detect sets of atomic propositions that are mutually ex-
clusive. For example, atomic propositions saying that a process p is in various
locations (e.g., p@loc1, p@loc2, and p@loc3) are always mutually exclusive. Sim-
ilarly, atomic propositions talking about values of the same variable (e.g., x > 10
and x < 5) are often contradictory. For a set E of mutually exclusive propositions
(also called exclusive set), we define the constraint as:

excl(E) =
∧
u,v∈E
u6=v

¬(u ∧ v)

While such a constraint may seems obvious to the reader, tools that trans-
late LTL formulas into Büchi automata do not analyze the semantics of atomic
propositions and thus they do not know that x > 10 and x < 5 are incompatible.

3.1 Formula Refinement

The refinement of an LTL formula ϕ with respect to a constraint κ is the formula
rκ(ϕ) defined by

rκ(ϕ) = ϕ ∧ Gκ.

where the knowledge about the constraint is made explicit.
This extra information allows tools that translate LTL formulas into au-

tomata to produce smaller automata. For instance the Büchi automaton of Fig-
ure 1(a) was generated by Spot [6] from the formula F(Ga∨ (GFb↔ GFc)). If the
formula is refined with a constraint built for the exclusive set {a, b, c}, then the
translator produces the smaller automaton from Figure 1(b): the edge between
states 3 and 5 labeled by bc is known to be never satisfiable, and the state 0 is
found to be superfluous (its incoming edges would be labeled by ab̄c̄, so this part
of the automaton is covered by state 2 already).

3.2 Automaton Refinement

Alternatively, the refinement can be performed on the property automaton A.
This allows the specification of erroneous behaviors to be supplied directly as
an automaton. Given an automaton A and a constraint κ, we obtain the refined
automaton rκ(A) by replacing any edge (r1, `, r2) of A by (r1, ` ∧ κ, r2) and
removing the edge whenever the new label reduces to false. Figure 1(c) shows
the result of applying this to the automaton of Figure 1(a). Note that as the edge
labels are Boolean functions, they accept many representations: we display them
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āc̄ ∨ b̄c̄

(b) Arκ(ϕ) = as(rκ(Aϕ))

0 1 2

345

ab̄c̄

ab̄c̄ b̄c̄
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ābc̄
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Fig. 1: Automata for ϕ = F(Ga ∨ (GFb↔ GFc)) and κ = excl({a, b, c}).

as some irredundant sums-of-products3 by convention. In this case, state 0 is not
removed, but it can be removed if we run some simplification algorithms (such as
simulation-based reductions [3]), which are often employed in LTL to automata
translators. The result of this simplification pass is then again in Figure 1(b).

If as(A) denotes the operation that simplifies an automaton A using the
same simplification algorithms that are used by a tool translating ϕ into Aϕ,
one would expect that Arκ(ϕ) = as(rκ(Aϕ)) always holds (as in the example of
Figure 1(b)). This is not true in practice for two reasons:

– Some translators have LTL rewriting rules that may react strangely to the
refined formula, sometimes to the point of producing larger automata.

– Some translators include automata simplification algorithms (such a WDBA-
minimization [5, 6]) that can only be applied when the formula is known, so
they cannot be run on arbitrary automata.

3 A sum-of-product is irredundant if all its products are prime implicants, and no
product can be removed without changing the function [13].
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Table 1: Considered LTL-to-BA translators, for reference.

translator version command

Spin [9, 11] 6.3.2 spin

LTL2BA [10] 1.1 ltl2ba

LTL3BA [2] 1.1.2 ltl3ba

LTL3BA-det ltl3ba -M0

Spot [6] 1.99b ltl2tgba -s

Spot-det ltl2tgba -s --deterministic

Nonetheless, both formula refinement or automaton refinement have three no-
ticeable effects on the model checking process:
– First, the removal of unsatisfiable transitions saves the model checker from

having to repeatedly evaluate the labels of these transitions during the prod-
uct construction, only to finally ignore them.

– Second, the automaton constructed with formula or automaton refinement
is often smaller than the original automaton (for example, removing some
transitions can make two states equivalent and such states can be merged).
This can have a very positive effect on the model checking process.

– Last, the longer labels produced by this refinement may take longer to eval-
uate depending on how the model checker is implemented. This is the only
negative effect, and we fix it in Section 5.

4 Experimental Evaluation

First we describe the general setting of our experiments. Then we show the
impact of formula refinement and automaton refinement. Finally, we compare
the two refinement approaches.

Benchmark. Our benchmark is made of 3316 verification tasks (i.e., a model
plus a specification) where some propositions are referring to different locations
of a single process so that we can construct exclusive sets. These tasks employ 101
instances of 16 parametrized models from Beem [14]; 50 tasks use specifications
from Beem, the others combine Beem models with random LTL formulas.

Tools. In our experiments, we use four LTL-to-BA translators presented in
Table 1. Two of the translators, namely LTL3BA and Spot, are used with two
settings: the default ones and the settings with the suffix “-det” that aim to
produce more deterministic automata. All translators are restricted by 20 minute
timeout. For formula refinement and automata refinement, we use tools ltlfilt
and autfilt from Spot 1.99.1. For emptiness checks, we use the same version
of Spin with the maximum search depth set to 100 000 000, memory limit 20
GiB, option -DNOSTUTTER (see Section 6.3 for the explanation), and partial-
order reduction enabled for tasks with next-free formulas. Emptiness check is
always restricted by 30 minute timeout.

https://spot.lrde.epita.fr/
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Table 2: Statistics of fails and successfully solved verification tasks with and
without formula refinement.

original tasks (S, ϕ) refined tasks (S, rκ(ϕ))

translation Spin tasks translation Spin tasks both tasks
translator timeouts fails solved timeouts fails solved solved

Spin 801 232 2283 926 201 2189 2183
LTL2BA 5 341 2970 2 302 3012 2929
LTL3BA 0 80 3236 0 55 3261 3227
LTL3BA-det 0 34 3282 0 27 3289 3279
Spot 2 27 3287 0 19 3297 3286
Spot-det 2 26 3288 0 19 3297 3287

Hardware. All computations are performed on an HP DL980 G7 server with
8 eight-core processors Intel Xeon X7560 2.26GHz and 448 GiB DDR3 RAM.
The server is shared with other users and its variable workload has led to a
high dispersion of measured running times. Hence, instead of running times, we
use the number of transitions visited by Spin, which is stable across multiple
executions and should be proportional to the running time.

Additional data and detailed information about this benchmark are available
at: http://fi.muni.cz/~xstrejc/publications/spin2015/

4.1 Impact of Formula Refinement

For each verification task (S, ϕ) and each translator of Table 1, we translate ϕ to
automaton Aϕ and run Spin on S and Aϕ. Then we refine the formula to rκ(ϕ)
and repeat the process. Table 2 shows the numbers of translation timeouts, Spin
fails (this number covers the cases when Spin timeouts or runs out of memory or
reaches the maximum search depth), and successfully solved verification prob-
lems. The data indicates that formula refinement has a mostly positive effect on
the model checking process: for all but one translator, the refinement increases
the number of successfully solved tasks (we discuss the case of Spin translator
in more details in Section 6.2). Nevertheless, the number of tasks solved both
with and without formula refinement is always smaller that the number of solved
original tasks, which means that the effect of formula refinement is negative in
some cases. In the rest of this section, for each translator we consider only the
tasks counted in the last column of the table, i.e., tasks solved both with and
without formula refinement.

We now look at the effect of formula refinement on the sizes of property
automata. Table 3 shows that the property automaton for a refined formula
has very frequently fewer states than the automaton for the original formula.
However, we cannot easily tell whether states are removed simply because they
are inaccessible after refinement (i.e., the constraint κ removed all the transitions
leading to a state) or if the refinement enabled additional simplifications as in

http://fi.muni.cz/~xstrejc/publications/spin2015/
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Table 3: Effect of formula refinement on property automata. For each translator
and each verification task, we compare the size of Aϕ with the size of Arκ(ϕ) and
report on the number of cases where the refinement resulted in additional states
(+states) or fewer states (−states). In case of equality, we look at the number
of edges or transitions.

effect Spin LTL2BA LTL3BA LTL3BA-det Spot Spot-det

+states 514 41 15 148 13 17
−states 168 1482 1679 1723 1722 1720
=states,+edges 37 17 0 0 9 10
=states,−edges 43 337 293 326 345 344
=states,=edges,+trans. 153 211 283 173 280 280
=states,=edges,−trans. 1226 785 899 848 849 848
no size change 42 56 58 61 68 68

Figure 1. In the former case, the refinement would have a little impact on the
size of the product: it is only saving useless attempts to synchronize transitions
that can never be synchronized while building this product.

Finally, we turn our attention to the actual effect of formula refinement on
performance of the emptiness check implemented in Spin. For each translator
and each verification task, let t1 be the number of transitions visited by Spin
for the original task and t2 be the same number for the refined task. Scatter
plots of Figure 2 show each pair (t1, t2) as a dot at this coordinates. The color4

of each dot says whether the property automaton for the refined formula has
more or less states than the automaton for the original formula. The data is
shown separately for each translator. We also distinguish the tasks with some
erroneous behavior from those without error. As many dots in the scatter plots
are overlapping, we present the data also via improvement ratios t2/t1. Values
of t2/t1 smaller than 1 correspond to cases where formula refinement actually
helped Spin, while values larger than 1 correspond to cases where the refinement
caused Spin to work more. Figure 3 gives an idea of the distribution of these
improvement ratios in our benchmark. On this figure, all improvement ratios
for a given tool are sorted from lowest to highest, and then they are plotted
using their rank as x coordinate, and using a logarithmic scale for the ratio.
One can immediately see on these curves that there is a large plateau around
y = 1 corresponding to the cases where there is no substantial improvement.
In the tasks without error, there are usually many cases with ratio below 0.95
(definite improvement), and very few cases above 1.05 (cases where refinement
hurt more than it helped). A special class of cases that are improved are those
that are found equivalent to false after refinement: those usually have a very
high improvement ratio, as the exploration of the product is now limited to a
single transition (after which Spin immediately realizes that the empty never
claim cannot be satisfied). Note that in tasks with error, the refined formula

4 We suggest viewing these figures in color using the electronic version of this article.
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Table 4: Distribution of the improvement ratios for formula refinement. The
counts of false cases are not included in the <0.95 classes.

without error with error

false <0.95 [0.95,1.05] >1.05 All <0.95 [0.95,1.05] >1.05 All

Spin 0 30 1257 50 1337 27 708 111 846
LTL2BA 61 462 1179 48 1750 288 602 289 1179
LTL3BA 374 401 1101 7 1883 194 942 208 1344
detLTL3BA 382 264 1255 12 1913 186 993 187 1366
Spot 384 300 1213 20 1917 244 902 223 1369
detSpot 385 297 1218 18 1918 248 903 218 1369

cannot be equivalent to false as all states of an erroneous behavior comply with
the constraint. Relatively high numbers of these “false” cases imply that the
formula refinement technique is an effective sanity check detecting specifications
unsatisfiable under given constraints.5 Table 4 gives counts of improvement ratios
in these classes.

Figures 2 and 3 and Table 4 show that for tasks without error, formula re-
finement has negative effect only very rarely and such effect is relatively small.
The positive effect is more frequent and substantial in many cases. The table
implies that LTL3BA and Spot can profit more from the refinement as they iden-
tify radically more false cases and they have significantly less cases with negative
effect than the other translators (some of the negative cases are discussed in Sec-
tion 6). This observation can be explained by advanced simplification techniques
implemented in LTL3BA and Spot.

In the tasks with erroneous behaviors, we observe that the number of im-
proved cases is almost balanced by the number of degraded cases (except for
Spin). This can be explained by the fact that refining an LTL formula my change
the shape of the output automaton, and thus change its transition order. There-
fore the model checker may have more or less luck in finding an erroneous run.
When such a run is found, Spin ends the computation without exploring the rest
of the product.

4.2 Impact of Automaton Refinement

As mentioned before, automaton refinement itself only cuts off some parts of the
automaton that are not used in the product. It has a bigger effect only when sim-
plification algorithms are executed after the refinement. In our experiments, we
combined automaton refinement with the automata simplifications implemented
in Spot.

To measure the effect of automaton refinement, we prepared the benchmark
as follows. We took the 3316 verification tasks used before. For every task, we

5 The high number of “false” cases is due to the use of random formulas. In real tasks,
such a false case would likely indicate a bug in the specification.
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Table 5: Statistics of fails and successfully solved verification tasks with and
without automata refinement.

original tasks (S,A) refined tasks (S, as(rκ(A)))

Spin tasks simplification of Spin tasks both tasks
fails solved rκ(A) timeouts fails solved solved

291 9061 12 99 9241 9038

Table 6: Effect of automaton refine-
ment on property automata.

effect

+states 0
−states 4955
=states,+edges 0
=states,−edges 1013
=states,=edges,+trans. 0
=states,=edges,−trans. 2400
no size change 670

Table 7: Distribution of the improvement
ratios for automaton refinement.

without error with error

false 906 0
< 0.95 853 735
[0.95, 1.05] 3251 2743
> 1.05 5 545
All 5015 4023

translated the formula with all considered translators and simplified the pro-
duced automata using Spot. The simplification is here applied to make the com-
parison of model checking with and without automaton refinement fair: without
this step we could not really distinguish the effect of automata refinement (fol-
lowed by simplification) from the effect of simplification itself. If the automaton
translation and simplification successfully finishes, we get a pair of a model and
a simplified automaton. In the rest of this section, we call such pairs verification
tasks. After removing duplicates, we have 9352 verification tasks.

For each task, we run Spin with the original automaton. Then we refine and
simplify the automaton and run Spin again. While automaton refinement is very
cheap, its simplification can be quite expensive. So we apply a 20 minute timeout.
Table 5 provides numbers of Spin fails on original tasks, timeouts of refined
automata simplifications, and Spin failures on refined tasks. In the following, we
work only with tasks solved both with and without automaton refinement.

As in the previous section, Table 6 presents the effect of automaton refine-
ment and simplification on the sizes of property automata. The refined and
simplified automata are smaller in the vast majority of cases and never bigger.

The effect of automaton refinement and simplification on performance of
emptiness check in Spin is presented in Figures 4 and 5, and Table 7 in the
same way as previously. On tasks without error, the effect is similar to formula
refinement: it is often positive and almost never negative. On tasks with error,
the positive effect is more frequent than the negative one.
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Table 8: Statistics of fails and successfully solved verification tasks with formula
refinement and automaton refinement.

tasks with formula refinement tasks with automaton refinement

automaton automaton both
construction Spin tasks construction Spin tasks tasks

timeouts fails solved timeouts fails solved solved

0 19 3297 35 25 3256 3256

4.3 Comparison of Formula and Automaton Refinement

Here we compare the formula refinement and automaton refinement using Spot
for the formula translation. For each of the 3316 considered tasks, we refine
the formula, translate it by Spot, and run Spin. Then we take the task again,
translate the original formula by Spot, refine and simplify the automaton, and
run Spin. Table 8 provides statistics about automata construction timeouts (this
comprises Spot timeouts and, in the case of automaton refinement, also simpli-
fication of refined automata timeouts), Spin timeouts, and solved tasks. Both
approaches detected 380 identical cases where the refined specification reduces
to false. In the following, we present the data from the 3256− 380 = 2876 tasks
solved by both approaches and not trivially equivalent to false.

Table 9, Figures 6 and 7, and Table 10 are analogous to the tables and figures
in the previous sections (the position of original tasks in the previous sections is
taken by tasks with formula refinement). Table 9 says that automaton refinement
often produces property automata with more states than formula refinement.
However, Figure 6 and Table 10 show that the overall effect of automata and
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Fig. 6: Comparison of the numbers of
product transitions visited by Spin in
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Fig. 7: Distribution of the improvement
ratios (t2/t1) using logarithmic scales.
Cases that have been reduced to false
are highlighted in bold.

formula refinement on performance of Spin is fully comparable, slightly in favor
of formula refinement.

5 Label Simplification

As mentioned in Section 3, a side-effect of specification refinement is that edges
get more complex labels. This is visible when comparing the automaton of Fig-
ure 1(b) to the one of Figure 1(a). For example the self-loop on state 3 is labeled
by āc̄∨ b̄c̄ instead of the original c̄. In our experiment, the overall average length
of an edge label (counted as the number of occurrences of atomic propositions

Table 9: Comparison of automata produced by
formula refinement and automaton refinement
(+states counts tasks where as(rκ(Aϕ)) has
more states than Arκ(ϕ) and so on).

effect

+states 315
−states 82
=states,+edges 52
=states,−edges 51
=states,=edges,+trans. 26
=states,=edges,−trans. 428
no size change 1922

Table 10: Distribution of the
improvement ratios for au-
tomaton refinement over for-
mula refinement.

without with
error error

< 0.95 44 133
[0.95, 1.05] 1399 970
> 1.05 71 259
All 1514 1362
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if (!(((!((((int)((P1 *)Pptr(f_pid(1)))->_p)==27))&&

!((((int)((P1 *)Pptr(f_pid(1)))->_p)==5)))||

(!((((int)((P1 *)Pptr(f_pid(1)))->_p)==27))&&

!((((int)((P1 *)Pptr(f_pid(1)))->_p)==9)))))) ...

if (!( !((((int)((P1 *)Pptr(f_pid(1)))->_p)==27)))) ...

Fig. 8: Code listings of a pan.m file. The upper part resulted from the edge labeled
by āc̄ ∨ b̄c̄ and the last line is from label c̄.

in the label) in the automata Arκ(ϕ) for refined formulas is 6.58, while the av-
erage label length in the corresponding automata Aϕ for unrefined formulas is
only 4.20. When executing Spin, the labels are compiled into C code to match
system transitions during the construction of the synchronized product. For ex-
ample, Figure 8 depicts the C code corresponding to the labels āc̄ ∨ b̄c̄ and c̄.
Clearly, longer labels can slow down the verification process without influenc-
ing any Spin statistics like visited transitions and stored states. However, the
expected slowdown should be only small as checking the labels is much cheaper
than computing successors for states of the system or storing the states.

To eliminate the slowdown, we simplify the labels in a step that can be
though of as the converse of refinement: instead of using a given constraint
to make labels more precise, we use it to make them less precise and shorter,
but equivalent to the original labels under the given constraint. For instance,
bc̄ can be shortened as b if we know that b and c cannot be both true in the
model. This simplification can be implemented by performing Boolean function
simplification with don’t care information: we do not care if the simplified label
additionally covers some variable assignments that can never happen in the
system. Concretely, we have implemented the simplification in Spot using the
Minato-Morreale algorithm [13]. The algorithms inputs two Boolean functions
bfc and dfe and produces an irredundant sum-of-product that covers at least
all the assignments satisfying bfc, and that is not satisfiable by at least all the
assignments not satisfying dfe. To simplify a label ` using a constraint κ, we call
the algorithm with bfc = ` ∧ κ and dfe = ` ∨ ¬κ. Figure 1(d) shows the result
of applying this label simplification (denoted as function ls) to Figure 1(b).

Note: The definition

of dfe is bogus in

the proceedings of

SPIN’15. This version

of the paper is fixed.

We applied the label simplification to automata obtained by formula refine-
ment and the average label length drops to 3.19, which is even lower that the
mentioned value for automata without refinement. We selected several cases with
high reduction of label length and run Spin several times with automata before
and after label simplification on a weaker, but isolated machine to get reliable
running times. In these tests, Spin runs up to 3.5% slower with automata before
label simplification.
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Fig. 9: An uncommon case where Arκ(ϕ) is much smaller than Aϕ, and yet Spin
performs better with Aϕ.

6 Interesting Cases

In this section we investigate several interesting cases where using refinement
caused worse performance.

6.1 The Case of Strongly Connected Components

Figure 9 shows an interesting case that we discovered among the few tasks with-
out error where the refined formula translated by Spot degrades the performance
of Spin. In this case, Spin performs better with the automaton Aϕ of Figure 9(a)
than with the smaller automaton Arκ(ϕ) of Figure 9(b). Please note that the au-
tomaton presented in Figure 9(a) is a pruned version of the real automaton, in
which we removed all transitions that do not appear in the product with the
model. For instance, in this pruned automaton it is obvious that the state 7 can
be merged with state 8, but the presence of other edges in the original automaton
prevented this simplification.

The reason Spin works better with the larger of these two automata is related
to the emptiness check used. The emptiness check procedure used in Spin by
default is based on two nested depth-first searches [12]: the main DFS, which
we shall call blue, explores the product (on-the-fly) and every time it would
backtrack from an accepting state s (i.e., all successors of s have been explored
by the blue DFS) it starts a second, red DFS from s. If the red DFS reaches
any state on the blue DFS search stack, then a reachable and accepting cycle is
found (since s is reachable from all states on the blue DFS search stack) and the
algorithm reports it as a counterexample. Otherwise, the red DFS terminates
and the blue DFS can continue. The two DFS always ignore states that have
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been completely explored by an instance of the red DFS, so a state is never
visited more than twice.

In the automaton of Figure 9(b), whenever the blue DFS backtracks a state of
the product that is synchronized with state 12, it has to start a red DFS that will
explore again states synchronized with 13 and previously explored by the blue
DFS (states synchronized with 12 and 14 will be ignored as they have already
been seen by a previous red DFS). This re-exploration of states synchronized
with 13 is something that (i) did not happen in the original automaton because
there is no accepting state above the corresponding state 3, and (ii) is useless
because there is no way to get back to state 12 after moving to state 13.

The NDFS algorithm could be patched to avoid this problem by simply
constraining the red DFS to explore only the states of the product whose pro-
jection on the property automaton belongs to the same strongly connected com-
ponent as its starting accepting state. This optimization was already suggested
by Edelkamp et al. [7, 8] with the additional trick that if the current SCC is
known to be weak (i.e., its states are all accepting and or all non-accepting),
then running a red DFS is not needed at all, as the blue DFS is guaranteed
to find any accepting cycle by itself. In the scenarios described by Figures 9(a)
and 9(b), all the SCCs have a single state, so the product automaton will be
weak and the red DFS should not be needed. Computing the strongly connected
components of the property automaton can be done in time that is linear to
the size of that automaton (typically a small value) before the actual emptiness
check starts, so this is a very cheap way to improve the model checking time.

6.2 Problems with LTL simplifications

A special class of interesting cases consists of formulas where formula refinement
leads to bigger automata. Such cases are surprisingly often connected with issues
in the earliest phases of LTL to automata translation, namely in formula pars-
ing or simplification. For example, LTL3BA implements several specific formula
reduction rules applied after all standard formula reductions. If such a rule is
applied, the reduced formula is checked again for possible application of some
reduction rule, but only on its top level. Hence, some reductions are not applied
when the input formula is refined with a constraint. This is considered as a bug
and it will be fixed in the next release of LTL3BA.

LTL2BA has even more problems with formula simplifications as it is sensi-
tive to superfluous parentheses. For instance, the command ltl2ba -f ’<>([]<>X

p)’ generates an automaton with 2 states, while the equivalent ltl2ba -f

’<>[]<>X p’ produces an automaton with 4 states. This is because the presence
of parentheses causes another pass of formula reduction to occur.

Table 3 indicates that Spin’s translator benefits less than the other trans-
lators from addition of constraints. Part of the problem, it seems, is due to a
change that was introduced in Spin 6 to allow LTL formulas embedding atomic
propositions with arbitrary Promela conditions. As a consequence of this change,
many parenthetical blocks are now considered as atomic propositions by Spin’s
translator, and simplifications are therefore missed. For instance, the formula
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(aR b)∧G(¬(a∧b)) is translated as if ¬(a∧b) was an independent atomic propo-
sition. While Spin 5 translates this formula into an automaton with one state
and one edge, Spin 6 outputs an automaton with two states and three edges,
where the edge connecting the states has unsatisfiable label ¬(a ∧ b) ∧ a ∧ b.

6.3 Problem with Spin

During our experiments, we discovered a handful of cases where equivalent never
claims would cause Spin to produce different results: e.g., a counterexample for
automata built by some tools, and no counterexamples for (equivalent) automata
built by other tools. Sometime the automata would differ only by the order in
which the transitions are listed. In turned out that this bug6 was due to a rare
combination of events in the red DFS in the presence of a deadlock in the system.
While it will be fixed in Spin 6.4.4, the fix came too late for us: our benchmark
takes more than a week of computation. All the presented results are computed
by compiling the Spin verifier with -DNOSTUTTER, which effectively means that
we ignore deadlock scenario, and we are safe from this bug.

7 Conclusions

We have reported on the effect of using information about impossible combi-
nations of propositions in the model to improve model checking. We proposed
two techniques: refinement is the process of making this information explicit in
the property automaton, while label simplification is the process of making this
information implicit. Our experiments show that these two operations, that can
be combined, have a positive effect on the model checking process. By refine-
ment we are able to obtain automata that are usually smaller, and then by label
simplification we shorten the labels of the automata to speedup the process of
transition matching during model checking.

The refinement can also be used as a sanity check: when a refinement leads
to a property automaton with no accepting state, it usually represent a bug in
the specification.

In the experiments, we only considered incompatibilities between atomic
propositions that denote a process being in different locations. More sources
of incompatibilities could be considered, such as atomic propositions that refer
to different variable values.

We could also extend the principle to more than just incompatible proposi-
tions: for instance from the model we could extract information about the validity
of atomic propositions in the initial state, the order of locations in a process,
or learn the fact that some variable will always be updated in a monotonous
way (e.g., can only be increased). All these informations can be used to pro-
duce stricter property automata that disallow these impossible behaviors, and
we think these automata should offer more opportunity for simplifications, and
should also contribute to better sanity checks.

6 http://spinroot.com/fluxbb/viewtopic.php?pid=3316

http://spinroot.com/fluxbb/viewtopic.php?pid=3316
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We demonstrated the usefulness of refinement to model checking, but we
believe it should also be useful in other contexts like probabilistic model checking
or controller synthesis.
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