Strategy Complexity of Zero-Sum Games on Graphs

Pierre Vandenhove1,2

Thesis supervised by Patricia Bouyer1 and Mickael Randour2

1Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, France
2F.R.S.-FNRS & UMONS – Université de Mons, Belgium

March 14, 2023 – LMF Seminar
Context

- Present work part of my thesis.
- Thesis supervised by...

Patricia Bouyer, Université Paris-Saclay, LMF

Mickael Randour, Université de Mons, Belgium

- Thesis defense in Mons at the end of April.
Problem: **synthesis**

- An (incomplete, reactive) **system**,
- living in an (uncontrollable) **environment**,
- with a purpose/**specification**.

⇝ Modeling through a **zero-sum game**.
Zero-sum turn-based games on graphs

- **Colors** $C = \{a, b, c\}$, arena $A = (V_1, V_2, E)$.
- **Two players** P_1 (○) and P_2 (□).

- **Objective** of P_1 is a set $W \subseteq C^\omega$.
- **Zero-sum**: objective of P_2 is $C^\omega \setminus W$.

Strategies

A **strategy** of a player is a function $\sigma : E^* \rightarrow E$.

A strategy σ of P_1 is **winning for** W **from** $v \in V$ if all infinite paths from v **consistent with** σ induce an infinite word in W.
Zero-sum games

Zero-sum turn-based games on graphs

- **Colors** $C = \{a, b, c\}$, arena $A = (V_1, V_2, E)$.
- **Two players** P_1 (○) and P_2 (□).

Infinite interaction

\[\leadsto \text{infinite word } w = b \]

- **Objective** of P_1 is a set $W \subseteq C^\omega$.
- **Zero-sum**: objective of P_2 is $C^\omega \setminus W$.

Strategies

A **strategy** of a player is a function $\sigma : E^* \rightarrow E$.

A strategy σ of P_1 is **winning for** W **from** $v \in V$ if all infinite paths from v **consistent with** σ induce an infinite word in W.
Zero-sum games

Zero-sum **turn-based** games on graphs

- **Colors** $C = \{a, b, c\}$, arena $A = (V_1, V_2, E)$.
- **Two players** P_1 (○) and P_2 (□).
 - Infinite interaction
 - \leadsto infinite word $w = ba$
- **Objective** of P_1 is a set $W \subseteq C^\omega$.
- **Zero-sum**: objective of P_2 is $C^\omega \setminus W$.

Strategies

A **strategy** of a player is a function $\sigma : E^* \rightarrow E$.

A strategy σ of P_1 is **winning for** W **from** $v \in V$ if all infinite paths from v **consistent with** σ induce an infinite word in W.
Zero-sum games

Zero-sum turn-based games on graphs

- **Colors** $C = \{a, b, c\}$, arena $A = (V_1, V_2, E)$.
- **Two players** P_1 (●) and P_2 (□).

 Infinite interaction
 \rightsquigarrow **infinite word** $w = bab$

- **Objective** of P_1 is a set $W \subseteq C^\omega$.
- **Zero-sum**: objective of P_2 is $C^\omega \setminus W$.

Strategies

A **strategy** of a player is a function $\sigma : E^* \rightarrow E$.

A strategy σ of P_1 is **winning for** W from $v \in V$ if all infinite paths from v **consistent with** σ induce an infinite word in W.
Zero-sum games

Zero-sum turn-based games on graphs

- Colors $C = \{a, b, c\}$, arena $A = (V_1, V_2, E)$.
- Two players P_1 (°) and P_2 (□).
 Infinite interaction
 \rightsquigarrow infinite word $w = babb$
- Objective of P_1 is a set $W \subseteq C^\omega$.
- Zero-sum: objective of P_2 is $C^\omega \setminus W$.

Strategies

A strategy of a player is a function $\sigma : E^* \rightarrow E$.
A strategy σ of P_1 is winning for W from $v \in V$ if all infinite paths from v consistent with σ induce an infinite word in W.
Zero-sum games

Zero-sum turn-based games on graphs

- **Colors** $C = \{a, b, c\}$, arena $A = (V_1, V_2, E)$.
- **Two players** P_1 (〇) and P_2 (□).
 Infinite interaction
 \leadsto **infinite word** $w = babbc \ldots \in C^\omega$.
- **Objective** of P_1 is a set $W \subseteq C^\omega$.
- **Zero-sum**: objective of P_2 is $C^\omega \setminus W$.

Strategies

A **strategy** of a player is a function $\sigma : E^* \to E$.
A strategy σ of P_1 is **winning for** W from $v \in V$ if all infinite paths from v **consistent with** σ induce an infinite word in W.
Strategy complexity

- Given a game and an initial vertex ⇝ **who can win?**
- To decide it, exhibit a **winning strategy** of a player.
- **Issues:**
 - strategies $\sigma : E^* \to E$ may not have a finite representation;
 - there are infinitely many of them.

Given an **objective**, when winning is possible, understand if **simple** strategies suffice to win, or if **complex** strategies are required.

Desirable properties:
- winning strategies can use bounded information (finite representation!);
- computable bounds on this information (finite number of strategies!).
Simple strategies

Memoryless strategies

A strategy is **memoryless** if it makes decisions based only on the **current arena vertex** \((\sigma: V_i \rightarrow E)\).

Finite-memory strategies

A strategy is **finite-memory** if it makes decisions based on the current arena vertex **and** the current state of a **memory structure** \((\sigma: V_i \times M \rightarrow E)\).

Finite **memory structure** \(M = (M, m_{\text{init}} \in M, \alpha_{\text{upd}}: M \times C \rightarrow M)\).

E.g., to remember whether \(a\) or \(b\) was last played:

```
a
\diamond m_1 \quad a
\quad a
m_2 \quad b
\quad b
\diamond
```

Memoryless strategies use **memory structure** \(\rightarrow C\).
Example

\[C = \{a, b, c\}, \]
\[W = \{w \in C^\omega \mid a \text{ is seen infinitely often and } b \text{ is seen infinitely often}\} \]

\[\sigma(v_1, m_1) = \overset{c}{\rightarrow} v_2 \]
\[\sigma(v_2, m_1) = \overset{b}{\rightarrow} v_2 \]
\[\sigma(v_2, m_2) = \overset{c}{\rightarrow} v_1 \]
\[\sigma(v_1, m_2) = \overset{a}{\rightarrow} v_2 \]

\(\rightsquigarrow\) Memoryless strategies do not suffice…
but **two memory states** do!
Example

\[C = \{a, b, c\}, \]
\[W = \{w \in C^\omega \mid a \text{ is seen infinitely often and } b \text{ is seen infinitely often}\} \]

\[\sigma(v_1, m_1) = \rightarrow v_2 \]
\[\sigma(v_2, m_1) = \rightarrow v_2 \]
\[\sigma(v_2, m_2) = \rightarrow v_1 \]
\[\sigma(v_1, m_2) = \rightarrow v_2 \]

\[\sim \] Memoryless strategies do **not** suffice...
but **two memory states** do!
Example

\[C = \{a, b, c\}, \]
\[W = \{w \in C^\omega \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often}\} \]

\[\sigma(v_1, m_1) = \xrightarrow{c} v_2 \]
\[\sigma(v_2, m_1) = \xrightarrow{b} v_2 \]
\[\sigma(v_2, m_2) = \xrightarrow{c} v_1 \]
\[\sigma(v_1, m_2) = \xrightarrow{a} v_2 \]

\[\leadsto \text{ Memoryless strategies do } \textbf{not} \text{ suffice...} \]
\[\textbf{but two memory states do!} \]
Example

\[C = \{ a, b, c \}, \]
\[W = \{ w \in C^\omega \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often} \} \]

\[\sigma(v_1, m_1) = c \xrightarrow{} v_2 \]
\[\sigma(v_2, m_1) = b \xrightarrow{} v_2 \]
\[\sigma(v_2, m_2) = c \xrightarrow{} v_1 \]
\[\sigma(v_1, m_2) = a \xrightarrow{} v_2 \]

\[\leadsto \] Memoryless strategies do not suffice…
but two memory states do!
Example

\[C = \{a, b, c\}, \]
\[W = \{ w \in C^\omega \mid a \text{ is seen infinitely often and } b \text{ is seen infinitely often} \} \]

\[\sigma(v_1, m_1) = c \rightarrow v_2 \]
\[\sigma(v_2, m_1) = b \rightarrow v_2 \]
\[\sigma(v_2, m_2) = c \rightarrow v_1 \]
\[\sigma(v_1, m_2) = a \rightarrow v_2 \]

\[\sim \Rightarrow \text{Memoryless strategies do not suffice...} \]
\[\text{but two memory states do!} \]
Example

\[C = \{a, b, c\}, \]
\[W = \{w \in C^\omega \mid a \text{ is seen } \infty \text{ly often and } b \text{ is seen } \infty \text{ly often}\} \]

\[\sigma(v_1, m_1) = \xrightarrow{c} v_2 \]
\[\sigma(v_2, m_1) = \xrightarrow{b} v_2 \]
\[\sigma(v_2, m_2) = \xrightarrow{c} v_1 \]
\[\sigma(v_1, m_2) = \xrightarrow{a} v_2 \]

\[\rightsquigarrow \text{ Memoryless strategies do not suffice...} \]
\[\text{but two memory states do!} \]
Finite-memory determinacy

Memoryless determinacy

An objective is memoryless-determined if in all arenas, memoryless strategies suffice for both players.

Finite-memory determinacy

An objective is finite-memory-determined if in all arenas, finite-memory strategies suffice for both players.

Various definitions depending on

- the class of arenas considered (finite, infinite, finitely branching...),
- whether we focus on both players or a single player.
State of the art: memoryless determinacy

Many “classical” objectives are memoryless-determined: reachability, Büchi, parity, energy, mean payoff, discounted sum...

Memoryless determinacy is well-understood:

- **Sufficient conditions** for both players,\(^1\) for a single player.\(^2\)
- **Characterizations** for both players over finite\(^3\)/infinite\(^4\) arenas, for a single player over infinite arenas.\(^5\)

\(^5\)Ohlmann, “Characterizing Positionality in Games of Infinite Duration over Infinite Graphs”, 2022.
State of the art: finite-memory determinacy

- **Finite-memory determinacy** is understood for specific objectives,\(^6\) but few results of wide applicability.\(^7\)
- Central class: \(\omega\)-regular objectives. Examples with \(C = \{a, b\} \):

 \[
 \omega\text{-regular expressions:} \quad \omega\text{-automata:} \quad \text{Linear temporal logic (LTL)}:
 \]

 \[
 b^* ab^* aC^\omega \quad \begin{array}{c}
 \text{q}_{\text{init}} \\
 \vdash
 \end{array} \quad \begin{array}{c}
 q_a \quad q_{aa} \\
 a \quad a, b
 \end{array} \quad \text{GF} a
 \]

Theorem\(^8,9\)

All \(\omega\)-regular objectives are finite-memory-determined.

Significance

Consequences of a fine-grained understanding of strategy complexity:

- **Decidability** of logical theories through FM det. (see *monadic second-order logic*, linked to ω-regular objectives).
- Practical **synthesis** problems through FM det. (see, e.g., *LTL specifications*\(^\text{10}\)).
- At the core of algorithms to **solve** games (see, e.g., *parity games*\(^\text{11}\)).
- Controllers as **compact** as possible.

\(^{10}\) Pnueli, “The Temporal Logic of Programs”, 1977.

\(^{11}\) Zielonka, “Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees”, 1998.
Overview of our contributions

I. General conditions for finite-memory determinacy

- **Arbitrary** objectives
- Algebraic **characterizations** of the sufficiency of a memory structure for both players
- **Theoretical tools** to find memory structures
- Generalizations of memoryless determinacy results

II. Precise memory requirements of classes of objectives

- \(\omega \)-regular objectives
- **Observation**: memory requirements not settled
 1. Regular objectives (\(\approx \) DFAs)
 - Effective characterization of precise memory structures
 - (Computational) complexity
 2. Objectives recognizable by **deterministic Büchi automata**
 - Effective characterization of “no memory for \(\mathcal{P}_1 \)”
 - Complexity
I. General conditions for finite-memory determinacy
I. General conditions
for finite-memory determinacy

- Generalizations of memoryless determinacy results
- One-to-two-player lifts
- Algebraic characterizations of the sufficiency of a memory structure for both players
- Theoretical tools to help find memory structures

II. Precise memory requirements of classes of objectives

- \(\omega \)-regular objectives
- Observation: memory requirements not settled
- Regular objectives (≈ DFAs)
- Effective characterization of precise memory structures
- (Computational) complexity
- Objectives recognizable by deterministic Büchi automata
- Effective characterization of “no memory for player 1”
- Complexity

Strategy Complexity of Zero-Sum Games on Graphs
P. Vandenhove (supervised by P. Bouyer and M. Randour)
One-to-two-player lift

One-to-two-player memoryless lift (finite arenas)12

Let $W \subseteq C^\omega$ be an objective. If

- in all one-player arenas of P_1, P_1 has memoryless winning strategies,
- in all one-player arenas of P_2, P_2 has memoryless winning strategies,

then both players have memoryless winning strategies in two-player arenas.

Extremely useful in practice. Very easy to recover memoryless determinacy of, e.g., parity13 and mean-payoff14 games.

What about finite-memory determinacy?

13Emerson and Jutla, “Tree Automata, Mu-Calculus and Determinacy (Extended Abstract)”, 1991.

14Ehrenfeucht and Mycielski, “Positional Strategies for Mean Payoff Games”, 1979.
What about finite-memory determinacy?

- **Counterexample** to a one-to-two-player lift for FM determinacy 😞.
- In the counterexample, the size of the memory depends on the size of the one-player arenas. Motivates the restriction to...

Arena-independent memory

An objective has *arena-independent finite-memory winning strategies* if

there exists a memory structure M such that for all arenas A, strategies using M suffice to win in A.

- Still holds for ω-regular objectives!
- Restriction over finite arenas, not so much over infinite arenas.
- **One-to-two-player lift works!**
One-to-two-player lifts

When does memory determinacy in two-player zero-sum games reduce to one-player memory determinacy?

<table>
<thead>
<tr>
<th>Arenas</th>
<th>Str. comp.</th>
<th>Memoryless</th>
<th>FM “∃M∀A”</th>
<th>Mildly growing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finite</td>
<td></td>
<td>[GZ05]¹⁵</td>
<td>[BLORV22]¹⁶</td>
<td>[Koz22]¹⁷</td>
</tr>
<tr>
<td>Infinite</td>
<td></td>
<td>[CN06]¹⁸</td>
<td>[BRV23]¹⁹</td>
<td></td>
</tr>
<tr>
<td>Finite stochastic</td>
<td></td>
<td>[GZ09]²⁰</td>
<td>[BORV21]²¹</td>
<td></td>
</tr>
</tbody>
</table>

By-products of algebraic/language-theoretic characterizations.

¹⁸ For prefix-independent objectives; Colcombet and Niwiński, “On the positional determinacy of edge-labeled games”, 2006.
I. General conditions for finite-memory determinacy

- **Arbitrary** objectives
- Algebraic **characterizations** of the sufficiency of a memory structure for both players
- **Theoretical tools** to help find memory structures
 - One-to-two-player lifts
 - **Memory structures**
 - \sim automata for the objectives
- Generalizations of memoryless determinacy results
Let $W \subseteq C^\omega$ be an objective.

≈ Myhill-Nerode congruence

For $x, y \in C^*$, $x \sim_W y$ if for all $z \in C^\omega$, $xz \in W \iff yz \in W$.

I.e., x and y have the same winning continuations; as good as each other.

Properties

- If W is ω-regular, then \sim_W has finitely many equivalence classes.
- There is a DFA S_W “prefix classifier” associated with \sim_W.

Might not “recognize” the language (\neq languages of *finite* words)...
Two examples

...but we noticed a decomposition involving prefix classifiers and memory structures.

Let $C = \{a, b\}$.

<table>
<thead>
<tr>
<th>Objective</th>
<th>Prefix-classifier S_W</th>
<th>Sufficient memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W = b^* ab^* aC^\omega$</td>
<td>b a b a b a</td>
<td>C</td>
</tr>
<tr>
<td>$W = \text{“a and b infinitely often”}$</td>
<td>C</td>
<td>b a b a</td>
</tr>
</tbody>
</table>

Strategy Complexity of Zero-Sum Games on Graphs

P. Vandenhove (supervised by P. Bouyer and M. Randour)
Main result

Let $\mathcal{W} \subseteq \mathcal{C}^\omega$ be an objective.

Theorem

If a finite memory structure \mathcal{M} suffices to play optimally in infinite arenas for both players, then

\[\mathcal{W} \text{ is recognized by a parity automaton } (S_W \otimes \mathcal{M}, p). \]

\[\Rightarrow \mathcal{W} \text{ is } \omega\text{-regular!} \]

Generalizes [CN06]\(^{22}\) (prefix-independent, memoryless case).

Let W be an objective. W is **finite-memory-determined** over infinite arenas $\iff W$ is ω-regular.

\iff is well-known.\(^{23,24}\)

\implies follows from the previous slide.

Part I: Summary

- **Useful notion** of arena-independent FM determinacy.
- General **characterizations** over finite and infinite arenas.
- Theoretical **tools** to determine memory requirements.
- Central place of ω-regular objectives.

Related publications

- Bouyer, Randour, V. (STACS’22 & TheoretiCS) “Characterizing Omega-Regularity through Finite-Memory Determinacy of Games on Infinite Graphs”

Limits

Wide applicability, but...

- not fully **effective**;
- in general, no tight memory requirements for **each** player.
II. Precise memory requirements of classes of objectives
II. Precise memory requirements of classes of objectives

- \(\omega\)-regular objectives
- Observation: memory requirements not settled

1. Regular objectives (\(\approx\) DFAs)
 - Effective characterization of precise memory structures
 - Existence of small structures is NP-complete

2. Objectives recognizable by deterministic Büchi automata
 - Effective characterization of “no memory for \(P_1\)"
 - Decidable in polynomial time
1 Regular objectives

Well-understood ω-regular objectives: *Muller conditions*, focusing on what is seen **infinitely often**.\(^25, 26\)

E.g., $b^*ab^*aC^\omega$ is not a Muller condition.

Missing pieces

Orthogonal quest: objectives where "**finite prefixes matter**".

We consider the “simplest” ones.

Regular objectives

- A **regular reachability objective** is a set LC^ω with $L \subseteq C^*$ regular.
- A **regular safety objective** is a set $C^\omega \setminus LC^\omega$.

Expressible as standard **deterministic finite automata**.

\(^{26}\) Dziembowskii, Jurdziński, and Walukiewicz, “How Much Memory is Needed to Win Infinite Games?”, 1997.
Question

Memory requirements of regular objectives

Characterize the memory structures that suffice to make optimal decisions for regular objectives **in any arena**. Compute **minimal** ones.

Idea

- A DFA recognizing the language, taken as a memory structure, always suffices for both players.
- But can be much smaller in general!
- Properties linked to the Myhill-Nerode congruence.
Comparing words

Let $W \subseteq C^\omega$ be an objective.

Comparing prefixes

For $x, y \in C^*$, $x \preceq_W y$ if for all $z \in C^\omega$, $xz \in W \implies yz \in W$.

I.e., y has more winning continuations than x; better situation.

Example

Let W be the regular reachability objective induced by this DFA.

E.g., $\varepsilon \prec_W a$, $a \prec_W ab$, a and b are incomparable for \preceq_W.
Necessary condition for the memory

Let $W \subseteq C^\omega$ be an objective.

Lemma

A sufficient memory structure $\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$ needs to distinguish incomparable words (for \preceq_W), i.e.,

$$\text{if } x, y \in C^* \text{ are incomparable for } \preceq_W, \text{ then } \alpha^*_{\text{upd}}(m_{\text{init}}, x) \neq \alpha^*_{\text{upd}}(m_{\text{init}}, y).$$

Why? (Example) need to make the right decision in this arena.
Characterizations

Theorem

Let W be a regular safety objective.

A memory structure \mathcal{M} suffices in all arenas for P_1 if and only if \mathcal{M} distinguishes incomparable words.

Theorem

Let W be a regular reachability objective.

Memory structure \mathcal{M} suffices in all arenas for P_1 if and only if \mathcal{M} distinguishes incomparable words and \mathcal{M} distinguishes insufficient progress.
Decision problems

Input: An automaton D inducing the regular **reachability** (or **safety**) objective W and $k \in \mathbb{N}$.

Question: \exists a memory structure M with $\leq k$ states that suffices for W?

Thanks to the “effectiveness” of the two properties, we showed that:

Theorem

These problems are NP-complete.
Implementation

Algorithms that find minimal memory structures for regular objectives, using a **SAT solver**.

\[
D = \text{memReq.smallest_memory_safety}(D)
\]

\[
M = \text{memReq.smallest_memory_safety}(D)
\]
II. Precise memory requirements of classes of objectives

- \(\omega \)-regular objectives
- **Observation:** memory requirements not settled

1. Regular objectives (\(\approx \) DFAs)
 - Effective characterization of precise memory structures
 - Existence of small structures is NP-complete

2. Objectives recognizable by deterministic Büchi automata
 - Effective characterization of “no memory for \(P_1 \)”
 - Decidable in polynomial time
Deterministic Büchi automata

A deterministic Büchi automaton \(B \) on \(C \)

- reads infinite words (in \(C^\omega \)),
- accepts words that see infinitely many Büchi transitions \(\bullet \).

\[
L(B) = \{ w \in \{ a, b \}^\omega \mid w \text{ sees } \infty \text{ly many } a \text{ and } \infty \text{ly many } b \}
\]

Question

Given \(B \), can \(P_1 \) win without memory for objective \(W = L(B) \)?
(Is \(L(B) \) half-positional?)
2 Results

Let \mathcal{B} be a deterministic Büchi automaton.

Theorem

For objective $W = \mathcal{L}(\mathcal{B})$, \mathcal{P}_1 does not need memory if and only if

- all prefixes are comparable for \preceq_W,
- W is progress-consistent, and
- W is recognized by its prefix classifier as a DBA.

Polynomial-time algorithm

Can be **decided** in $O(|\mathcal{B}|^4)$ time.
Part II: Summary

• Tools to study memory req. of classes of \(\omega \)-regular objectives.
• Effective **characterizations** for DFAs and DBAs.
• **Decidability** and **complexity** of the related decision problems.

Related publications

• Bouyer, Fijalkow, Randour, V. (Submitted preprint) “How to Play Optimally for Regular Objectives?”
• Bouyer, Casares, Randour, V. (CONCUR’22) “Half-Positional Objectives Recognized by Deterministic Büchi Automata”
Future works

• *(Part I)* General results for arena-dependent memory requirements.
 ▶ Observing *edges* rather than colors in the model.
 ▶ Well-behaved nondeterminism (*history-determinism*).27

• *(Part II)* Automatically *compute minimal memory structures* for all \(\omega\)-regular objectives?

• More expressive *settings* (e.g., stochastic, concurrent,28 or timed games).

• More expressive *strategy models* than finite-state machines (e.g., pushdown29 or register30 automata).

Thanks!

29 Walukiewicz, “Pushdown Processes: Games and Model-Checking”, 2001.
30 Exibard et al., “Computability of Data-Word Transductions over Different Data Domains”, 2022.